The Coq Standard Library
Here is a short description of the Coq standard library, which is
distributed with the system.
It provides a set of modules directly available
through the Require Import command.
The standard library is composed of the following subdirectories:
- Init:
The core library (automatically loaded when starting Coq)
-
Notations
Datatypes
Logic
Logic_Type
Peano
Specif
Tactics
Wf
(Prelude)
- Logic:
Classical logic and dependent equality
-
Classical_Pred_Set
Classical_Pred_Type
Classical_Prop
Classical_Type
(Classical)
ClassicalFacts
Decidable
DecidableType
DecidableTypeEx
Eqdep_dec
EqdepFacts
Eqdep
JMeq
ChoiceFacts
RelationalChoice
ClassicalChoice
ClassicalDescription
ClassicalEpsilon
ClassicalUniqueChoice
Berardi
Diaconescu
Hurkens
ProofIrrelevance
ProofIrrelevanceFacts
ConstructiveEpsilon
- Arith:
Basic Peano arithmetic
-
Le
Lt
Plus
Minus
Mult
Gt
Between
Peano_dec
Compare_dec
(Arith)
Min
Max
Compare
Div2
Div
EqNat
Euclid
Even
Bool_nat
Factorial
Wf_nat
- NArith:
Binary positive integers
-
BinPos
BinNat
(NArith)
Pnat
Nnat
Ndigits
Ndist
Ndec
.
- ZArith:
Binary integers
-
BinInt
Zorder
Zcompare
Znat
Zmin
Zmax
Zminmax
Zabs
Zeven
auxiliary
ZArith_dec
Zbool
Zmisc
Wf_Z
Zhints
(ZArith_base)
Zcomplements
Zsqrt
Zpower
Zdiv
Zlogarithm
(ZArith)
Zwf
Zbinary
Znumtheory
Int
- QArith:
Rational numbers
-
QArith_base
Qreduction
Qring
(QArith)
Qreals
Qcanon
- Reals:
Formalization of real numbers
-
Rdefinitions
Raxioms
RIneq
DiscrR
(Rbase)
RList
Ranalysis
Rbasic_fun
Rderiv
Rfunctions
Rgeom
R_Ifp
Rlimit
Rseries
Rsigma
R_sqr
Rtrigo_fun
Rtrigo
SplitAbsolu
SplitRmult
Alembert
AltSeries
ArithProp
Binomial
Cauchy_prod
Cos_plus
Cos_rel
Exp_prop
Integration
MVT
NewtonInt
PSeries_reg
PartSum
R_sqrt
Ranalysis1
Ranalysis2
Ranalysis3
Ranalysis4
Rcomplete
RiemannInt
RiemannInt_SF
Rpower
Rprod
Rsqrt_def
Rtopology
Rtrigo_alt
Rtrigo_calc
Rtrigo_def
Rtrigo_reg
SeqProp
SeqSeries
Sqrt_reg
LegacyRfield
Rpow_def
(Reals)
- Sets:
Sets (classical, constructive, finite, infinite, powerset, etc.)
-
Classical_sets
Constructive_sets
Cpo
Ensembles
Finite_sets_facts
Finite_sets
Image
Infinite_sets
Integers
Multiset
Partial_Order
Permut
Powerset_Classical_facts
Powerset_facts
Powerset
Relations_1_facts
Relations_1
Relations_2_facts
Relations_2
Relations_3_facts
Relations_3
Uniset
- Relations:
Relations (definitions and basic results)
-
Relation_Definitions
Relation_Operators
Relations
Operators_Properties
Rstar
Newman
- Wellfounded:
Well-founded Relations
-
Disjoint_Union
Inclusion
Inverse_Image
Lexicographic_Exponentiation
Lexicographic_Product
Transitive_Closure
Union
Wellfounded
Well_Ordering
- Setoids:
-
Setoid
- Bool:
Booleans (basic functions and results)
-
Bool
BoolEq
DecBool
IfProp
Sumbool
Zerob
Bvector
- Lists:
Polymorphic lists, Streams (infinite sequences)
-
List
ListSet
MonoList
SetoidList
Streams
TheoryList
ListTactics
- FSets:
Modular implementation of finite sets/maps using lists
-
OrderedType
OrderedTypeAlt
OrderedTypeEx
FSetInterface
FSetBridge
FSetProperties
FSetEqProperties
FSetList
(FSets)
FSetFacts
FSetAVL
FSetToFiniteSet
FSetWeakProperties
FSetWeakInterface
FSetWeakFacts
FSetWeakList
FSetWeak
FMapInterface
FMapList
FMapPositive
FMapIntMap
FMapFacts
(FMaps)
FMapAVL
FMapWeakInterface
FMapWeakList
FMapWeak
FMapWeakFacts
- IntMap:
An implementation of finite sets/maps as trees indexed by addresses
-
Adalloc
Map
Fset
Mapaxioms
Mapiter
Mapcanon
Mapsubset
Lsort
Mapfold
Mapcard
Mapc
Maplists
Allmaps
- Strings
Implementation of string as list of ascii characters
-
Ascii
String
- Sorting:
Axiomatizations of sorts
-
Heap
Permutation
Sorting
PermutEq
PermutSetoid