Library Coq.FSets.FSetWeakProperties
NB: this file is a clone of
FSetProperties
for weak sets
and should remain so until we find a way to share the two.
This functor derives additional properties from
FSetWeakInterface.S
.
Contrary to the functor in FSetWeakEqProperties
it uses
predicates over sets instead of sets operations, i.e.
In x s
instead of mem x s=true
,
Equal s s'
instead of equal s s'=true
, etc.
Require Export FSetWeakInterface.
Require Import FSetWeakFacts.
Set Implicit Arguments.
Unset Strict Implicit.
Hint Unfold transpose compat_op.
Hint Extern 1 (Setoid_Theory _ _) => constructor; congruence.
Module Properties (M: S).
Import M.E.
Import M.
Import Logic.
Import Peano.
Results about lists without duplicates
Module FM := Facts M.
Import FM.
Definition Add (x : elt) (s s' : t) :=
forall y : elt, In y s' <-> E.eq x y \/ In y s.
Lemma In_dec : forall x s, {In x s} + {~ In x s}.
Proof.
intros; generalize (mem_iff s x); case (mem x s); intuition.
Qed.
Section BasicProperties.
properties of
Equal
Lemma equal_refl : forall s, s[=]s.
Proof.
unfold Equal; intuition.
Qed.
Lemma equal_sym : forall s s', s[=]s' -> s'[=]s.
Proof.
unfold Equal; intros.
rewrite H; intuition.
Qed.
Lemma equal_trans : forall s1 s2 s3, s1[=]s2 -> s2[=]s3 -> s1[=]s3.
Proof.
unfold Equal; intros.
rewrite H; exact (H0 a).
Qed.
Variable s s' s'' s1 s2 s3 : t.
Variable x x' : elt.
properties of
Subset
Lemma subset_refl : s[<=]s.
Proof.
unfold Subset; intuition.
Qed.
Lemma subset_antisym : s[<=]s' -> s'[<=]s -> s[=]s'.
Proof.
unfold Subset, Equal; intuition.
Qed.
Lemma subset_trans : s1[<=]s2 -> s2[<=]s3 -> s1[<=]s3.
Proof.
unfold Subset; intuition.
Qed.
Lemma subset_equal : s[=]s' -> s[<=]s'.
Proof.
unfold Subset, Equal; firstorder.
Qed.
Lemma subset_empty : empty[<=]s.
Proof.
unfold Subset; intros a; set_iff; intuition.
Qed.
Lemma subset_remove_3 : s1[<=]s2 -> remove x s1 [<=] s2.
Proof.
unfold Subset; intros H a; set_iff; intuition.
Qed.
Lemma subset_diff : s1[<=]s3 -> diff s1 s2 [<=] s3.
Proof.
unfold Subset; intros H a; set_iff; intuition.
Qed.
Lemma subset_add_3 : In x s2 -> s1[<=]s2 -> add x s1 [<=] s2.
Proof.
unfold Subset; intros H H0 a; set_iff; intuition.
rewrite <- H2; auto.
Qed.
Lemma subset_add_2 : s1[<=]s2 -> s1[<=] add x s2.
Proof.
unfold Subset; intuition.
Qed.
Lemma in_subset : In x s1 -> s1[<=]s2 -> In x s2.
Proof.
unfold Subset; intuition.
Qed.
Lemma double_inclusion : s1[=]s2 <-> s1[<=]s2 /\ s2[<=]s1.
Proof.
unfold Subset, Equal; split; intros; intuition; generalize (H a); intuition.
Qed.
properties of
empty
Lemma empty_is_empty_1 : Empty s -> s[=]empty.
Proof.
unfold Empty, Equal; intros; generalize (H a); set_iff; tauto.
Qed.
Lemma empty_is_empty_2 : s[=]empty -> Empty s.
Proof.
unfold Empty, Equal; intros; generalize (H a); set_iff; tauto.
Qed.
properties of
add
Lemma add_equal : In x s -> add x s [=] s.
Proof.
unfold Equal; intros; set_iff; intuition.
rewrite <- H1; auto.
Qed.
Lemma add_add : add x (add x' s) [=] add x' (add x s).
Proof.
unfold Equal; intros; set_iff; tauto.
Qed.
properties of
remove
Lemma remove_equal : ~ In x s -> remove x s [=] s.
Proof.
unfold Equal; intros; set_iff; intuition.
rewrite H1 in H; auto.
Qed.
Lemma Equal_remove : s[=]s' -> remove x s [=] remove x s'.
Proof.
intros; rewrite H; apply equal_refl.
Qed.
properties of
add
and remove
Lemma add_remove : In x s -> add x (remove x s) [=] s.
Proof.
unfold Equal; intros; set_iff; elim (eq_dec x a); intuition.
rewrite <- H1; auto.
Qed.
Lemma remove_add : ~In x s -> remove x (add x s) [=] s.
Proof.
unfold Equal; intros; set_iff; elim (eq_dec x a); intuition.
rewrite H1 in H; auto.
Qed.
properties of
singleton
Lemma singleton_equal_add : singleton x [=] add x empty.
Proof.
unfold Equal; intros; set_iff; intuition.
Qed.
properties of
union
Lemma union_sym : union s s' [=] union s' s.
Proof.
unfold Equal; intros; set_iff; tauto.
Qed.
Lemma union_subset_equal : s[<=]s' -> union s s' [=] s'.
Proof.
unfold Subset, Equal; intros; set_iff; intuition.
Qed.
Lemma union_equal_1 : s[=]s' -> union s s'' [=] union s' s''.
Proof.
intros; rewrite H; apply equal_refl.
Qed.
Lemma union_equal_2 : s'[=]s'' -> union s s' [=] union s s''.
Proof.
intros; rewrite H; apply equal_refl.
Qed.
Lemma union_assoc : union (union s s') s'' [=] union s (union s' s'').
Proof.
unfold Equal; intros; set_iff; tauto.
Qed.
Lemma add_union_singleton : add x s [=] union (singleton x) s.
Proof.
unfold Equal; intros; set_iff; tauto.
Qed.
Lemma union_add : union (add x s) s' [=] add x (union s s').
Proof.
unfold Equal; intros; set_iff; tauto.
Qed.
Lemma union_subset_1 : s [<=] union s s'.
Proof.
unfold Subset; intuition.
Qed.
Lemma union_subset_2 : s' [<=] union s s'.
Proof.
unfold Subset; intuition.
Qed.
Lemma union_subset_3 : s[<=]s'' -> s'[<=]s'' -> union s s' [<=] s''.
Proof.
unfold Subset; intros H H0 a; set_iff; intuition.
Qed.
Lemma union_subset_4 : s[<=]s' -> union s s'' [<=] union s' s''.
Proof.
unfold Subset; intros H a; set_iff; intuition.
Qed.
Lemma union_subset_5 : s[<=]s' -> union s'' s [<=] union s'' s'.
Proof.
unfold Subset; intros H a; set_iff; intuition.
Qed.
Lemma empty_union_1 : Empty s -> union s s' [=] s'.
Proof.
unfold Equal, Empty; intros; set_iff; firstorder.
Qed.
Lemma empty_union_2 : Empty s -> union s' s [=] s'.
Proof.
unfold Equal, Empty; intros; set_iff; firstorder.
Qed.
Lemma not_in_union : ~In x s -> ~In x s' -> ~In x (union s s').
Proof.
intros; set_iff; intuition.
Qed.
properties of
inter
Lemma inter_sym : inter s s' [=] inter s' s.
Proof.
unfold Equal; intros; set_iff; tauto.
Qed.
Lemma inter_subset_equal : s[<=]s' -> inter s s' [=] s.
Proof.
unfold Equal; intros; set_iff; intuition.
Qed.
Lemma inter_equal_1 : s[=]s' -> inter s s'' [=] inter s' s''.
Proof.
intros; rewrite H; apply equal_refl.
Qed.
Lemma inter_equal_2 : s'[=]s'' -> inter s s' [=] inter s s''.
Proof.
intros; rewrite H; apply equal_refl.
Qed.
Lemma inter_assoc : inter (inter s s') s'' [=] inter s (inter s' s'').
Proof.
unfold Equal; intros; set_iff; tauto.
Qed.
Lemma union_inter_1 : inter (union s s') s'' [=] union (inter s s'') (inter s' s'').
Proof.
unfold Equal; intros; set_iff; tauto.
Qed.
Lemma union_inter_2 : union (inter s s') s'' [=] inter (union s s'') (union s' s'').
Proof.
unfold Equal; intros; set_iff; tauto.
Qed.
Lemma inter_add_1 : In x s' -> inter (add x s) s' [=] add x (inter s s').
Proof.
unfold Equal; intros; set_iff; intuition.
rewrite <- H1; auto.
Qed.
Lemma inter_add_2 : ~ In x s' -> inter (add x s) s' [=] inter s s'.
Proof.
unfold Equal; intros; set_iff; intuition.
destruct H; rewrite H0; auto.
Qed.
Lemma empty_inter_1 : Empty s -> Empty (inter s s').
Proof.
unfold Empty; intros; set_iff; firstorder.
Qed.
Lemma empty_inter_2 : Empty s' -> Empty (inter s s').
Proof.
unfold Empty; intros; set_iff; firstorder.
Qed.
Lemma inter_subset_1 : inter s s' [<=] s.
Proof.
unfold Subset; intro a; set_iff; tauto.
Qed.
Lemma inter_subset_2 : inter s s' [<=] s'.
Proof.
unfold Subset; intro a; set_iff; tauto.
Qed.
Lemma inter_subset_3 :
s''[<=]s -> s''[<=]s' -> s''[<=] inter s s'.
Proof.
unfold Subset; intros H H' a; set_iff; intuition.
Qed.
properties of
diff
Lemma empty_diff_1 : Empty s -> Empty (diff s s').
Proof.
unfold Empty, Equal; intros; set_iff; firstorder.
Qed.
Lemma empty_diff_2 : Empty s -> diff s' s [=] s'.
Proof.
unfold Empty, Equal; intros; set_iff; firstorder.
Qed.
Lemma diff_subset : diff s s' [<=] s.
Proof.
unfold Subset; intros a; set_iff; tauto.
Qed.
Lemma diff_subset_equal : s[<=]s' -> diff s s' [=] empty.
Proof.
unfold Subset, Equal; intros; set_iff; intuition; absurd (In a empty); auto.
Qed.
Lemma remove_diff_singleton :
remove x s [=] diff s (singleton x).
Proof.
unfold Equal; intros; set_iff; intuition.
Qed.
Lemma diff_inter_empty : inter (diff s s') (inter s s') [=] empty.
Proof.
unfold Equal; intros; set_iff; intuition; absurd (In a empty); auto.
Qed.
Lemma diff_inter_all : union (diff s s') (inter s s') [=] s.
Proof.
unfold Equal; intros; set_iff; intuition.
elim (In_dec a s'); auto.
Qed.
properties of
Add
Lemma Add_add : Add x s (add x s).
Proof.
unfold Add; intros; set_iff; intuition.
Qed.
Lemma Add_remove : In x s -> Add x (remove x s) s.
Proof.
unfold Add; intros; set_iff; intuition.
elim (eq_dec x y); auto.
rewrite <- H1; auto.
Qed.
Lemma union_Add : Add x s s' -> Add x (union s s'') (union s' s'').
Proof.
unfold Add; intros; set_iff; rewrite H; tauto.
Qed.
Lemma inter_Add :
In x s'' -> Add x s s' -> Add x (inter s s'') (inter s' s'').
Proof.
unfold Add; intros; set_iff; rewrite H0; intuition.
rewrite <- H2; auto.
Qed.
Lemma union_Equal :
In x s'' -> Add x s s' -> union s s'' [=] union s' s''.
Proof.
unfold Add, Equal; intros; set_iff; rewrite H0; intuition.
rewrite <- H1; auto.
Qed.
Lemma inter_Add_2 :
~In x s'' -> Add x s s' -> inter s s'' [=] inter s' s''.
Proof.
unfold Add, Equal; intros; set_iff; rewrite H0; intuition.
destruct H; rewrite H1; auto.
Qed.
End BasicProperties.
Hint Immediate equal_sym: set.
Hint Resolve equal_refl equal_trans : set.
Hint Immediate add_remove remove_add union_sym inter_sym: set.
Hint Resolve subset_refl subset_equal subset_antisym
subset_trans subset_empty subset_remove_3 subset_diff subset_add_3
subset_add_2 in_subset empty_is_empty_1 empty_is_empty_2 add_equal
remove_equal singleton_equal_add union_subset_equal union_equal_1
union_equal_2 union_assoc add_union_singleton union_add union_subset_1
union_subset_2 union_subset_3 inter_subset_equal inter_equal_1 inter_equal_2
inter_assoc union_inter_1 union_inter_2 inter_add_1 inter_add_2
empty_inter_1 empty_inter_2 empty_union_1 empty_union_2 empty_diff_1
empty_diff_2 union_Add inter_Add union_Equal inter_Add_2 not_in_union
inter_subset_1 inter_subset_2 inter_subset_3 diff_subset diff_subset_equal
remove_diff_singleton diff_inter_empty diff_inter_all Add_add Add_remove
Equal_remove add_add : set.
Section Old_Spec_Now_Properties.
Notation NoDup := (NoDupA E.eq).
When
FSets
was first designed, the order in which Ocaml's Set.fold
takes the set elements was unspecified. This specification reflects this fact:
Lemma fold_0 :
forall s (A : Set) (i : A) (f : elt -> A -> A),
exists l : list elt,
NoDup l /\
(forall x : elt, In x s <-> InA E.eq x l) /\
fold f s i = fold_right f i l.
Proof.
intros; exists (rev (elements s)); split.
apply NoDupA_rev; auto.
exact E.eq_trans.
split; intros.
rewrite elements_iff; do 2 rewrite InA_alt.
split; destruct 1; generalize (In_rev (elements s) x0); exists x0; intuition.
rewrite fold_left_rev_right.
apply fold_1.
Qed.
An alternate (and previous) specification for
fold
was based on
the recursive structure of a set. It is now lemmas fold_1
and
fold_2
.
Lemma fold_1 :
forall s (A : Set) (eqA : A -> A -> Prop)
(st : Setoid_Theory A eqA) (i : A) (f : elt -> A -> A),
Empty s -> eqA (fold f s i) i.
Proof.
unfold Empty; intros; destruct (fold_0 s i f) as (l,(H1, (H2, H3))).
rewrite H3; clear H3.
generalize H H2; clear H H2; case l; simpl; intros.
refl_st.
elim (H e).
elim (H2 e); intuition.
Qed.
Lemma fold_2 :
forall s s' x (A : Set) (eqA : A -> A -> Prop)
(st : Setoid_Theory A eqA) (i : A) (f : elt -> A -> A),
compat_op E.eq eqA f ->
transpose eqA f ->
~ In x s -> Add x s s' -> eqA (fold f s' i) (f x (fold f s i)).
Proof.
intros; destruct (fold_0 s i f) as (l,(Hl, (Hl1, Hl2)));
destruct (fold_0 s' i f) as (l',(Hl', (Hl'1, Hl'2))).
rewrite Hl2; rewrite Hl'2; clear Hl2 Hl'2.
apply fold_right_add with (eqA:=E.eq)(eqB:=eqA); auto.
eauto.
exact eq_dec.
rewrite <- Hl1; auto.
intros; rewrite <- Hl1; rewrite <- Hl'1; auto.
Qed.
Similar specifications for
cardinal
.
Lemma cardinal_fold : forall s, cardinal s = fold (fun _ => S) s 0.
Proof.
intros; rewrite cardinal_1; rewrite M.fold_1.
symmetry; apply fold_left_length; auto.
Qed.
Lemma cardinal_0 :
forall s, exists l : list elt,
NoDupA E.eq l /\
(forall x : elt, In x s <-> InA E.eq x l) /\
cardinal s = length l.
Proof.
intros; exists (elements s); intuition; apply cardinal_1.
Qed.
Lemma cardinal_1 : forall s, Empty s -> cardinal s = 0.
Proof.
intros; rewrite cardinal_fold; apply fold_1; auto.
Qed.
Lemma cardinal_2 :
forall s s' x, ~ In x s -> Add x s s' -> cardinal s' = S (cardinal s).
Proof.
intros; do 2 rewrite cardinal_fold.
change S with ((fun _ => S) x).
apply fold_2; auto.
Qed.
End Old_Spec_Now_Properties.
Lemma cardinal_inv_1 : forall s, cardinal s = 0 -> Empty s.
Proof.
intros s; rewrite M.cardinal_1; intros H a; red.
rewrite elements_iff.
destruct (elements s); simpl in *; discriminate || inversion 1.
Qed.
Hint Resolve cardinal_inv_1.
Lemma cardinal_inv_2 :
forall s n, cardinal s = S n -> { x : elt | In x s }.
Proof.
intros; rewrite M.cardinal_1 in H.
generalize (elements_2 (s:=s)).
destruct (elements s); try discriminate.
exists e; auto.
Qed.
Lemma Equal_cardinal_aux :
forall n s s', cardinal s = n -> s[=]s' -> cardinal s = cardinal s'.
Proof.
simple induction n; intros.
rewrite H; symmetry .
apply cardinal_1.
rewrite <- H0; auto.
destruct (cardinal_inv_2 H0) as (x,H2).
revert H0.
rewrite (cardinal_2 (s:=remove x s) (s':=s) (x:=x)); auto with set.
rewrite (cardinal_2 (s:=remove x s') (s':=s') (x:=x)); auto with set.
rewrite H1 in H2; auto with set.
Qed.
Lemma Equal_cardinal : forall s s', s[=]s' -> cardinal s = cardinal s'.
Proof.
intros; apply Equal_cardinal_aux with (cardinal s); auto.
Qed.
Add Morphism cardinal : cardinal_m.
Proof.
exact Equal_cardinal.
Qed.
Hint Resolve Add_add Add_remove Equal_remove cardinal_inv_1 Equal_cardinal.
Lemma cardinal_induction :
forall P : t -> Type,
(forall s, Empty s -> P s) ->
(forall s s', P s -> forall x, ~In x s -> Add x s s' -> P s') ->
forall n s, cardinal s = n -> P s.
Proof.
simple induction n; intros; auto.
destruct (cardinal_inv_2 H) as (x,H0).
apply X0 with (remove x s) x; auto.
apply X1; auto.
rewrite (cardinal_2 (x:=x)(s:=remove x s)(s':=s)) in H; auto.
Qed.
Lemma set_induction :
forall P : t -> Type,
(forall s : t, Empty s -> P s) ->
(forall s s' : t, P s -> forall x : elt, ~In x s -> Add x s s' -> P s') ->
forall s : t, P s.
Proof.
intros; apply cardinal_induction with (cardinal s); auto.
Qed.
Other properties of
fold
.
Section Fold.
Variables (A:Set)(eqA:A->A->Prop)(st:Setoid_Theory _ eqA).
Variables (f:elt->A->A)(Comp:compat_op E.eq eqA f)(Ass:transpose eqA f).
Section Fold_1.
Variable i i':A.
Lemma fold_empty : eqA (fold f empty i) i.
Proof.
apply fold_1; auto.
Qed.
Lemma fold_equal :
forall s s', s[=]s' -> eqA (fold f s i) (fold f s' i).
Proof.
intros s; pattern s; apply set_induction; clear s; intros.
trans_st i.
apply fold_1; auto.
sym_st; apply fold_1; auto.
rewrite <- H0; auto.
trans_st (f x (fold f s i)).
apply fold_2 with (eqA := eqA); auto.
sym_st; apply fold_2 with (eqA := eqA); auto.
unfold Add in *; intros.
rewrite <- H2; auto.
Qed.
Lemma fold_add : forall s x, ~In x s ->
eqA (fold f (add x s) i) (f x (fold f s i)).
Proof.
intros; apply fold_2 with (eqA := eqA); auto.
Qed.
Lemma add_fold : forall s x, In x s ->
eqA (fold f (add x s) i) (fold f s i).
Proof.
intros; apply fold_equal; auto with set.
Qed.
Lemma remove_fold_1: forall s x, In x s ->
eqA (f x (fold f (remove x s) i)) (fold f s i).
Proof.
intros.
sym_st.
apply fold_2 with (eqA:=eqA); auto.
Qed.
Lemma remove_fold_2: forall s x, ~In x s ->
eqA (fold f (remove x s) i) (fold f s i).
Proof.
intros.
apply fold_equal; auto with set.
Qed.
Lemma fold_commutes : forall s x,
eqA (fold f s (f x i)) (f x (fold f s i)).
Proof.
intros; pattern s; apply set_induction; clear s; intros.
trans_st (f x i).
apply fold_1; auto.
sym_st.
apply Comp; auto.
apply fold_1; auto.
trans_st (f x0 (fold f s (f x i))).
apply fold_2 with (eqA:=eqA); auto.
trans_st (f x0 (f x (fold f s i))).
trans_st (f x (f x0 (fold f s i))).
apply Comp; auto.
sym_st.
apply fold_2 with (eqA:=eqA); auto.
Qed.
Lemma fold_init : forall s, eqA i i' ->
eqA (fold f s i) (fold f s i').
Proof.
intros; pattern s; apply set_induction; clear s; intros.
trans_st i.
apply fold_1; auto.
trans_st i'.
sym_st; apply fold_1; auto.
trans_st (f x (fold f s i)).
apply fold_2 with (eqA:=eqA); auto.
trans_st (f x (fold f s i')).
sym_st; apply fold_2 with (eqA:=eqA); auto.
Qed.
End Fold_1.
Section Fold_2.
Variable i:A.
Lemma fold_union_inter : forall s s',
eqA (fold f (union s s') (fold f (inter s s') i))
(fold f s (fold f s' i)).
Proof.
intros; pattern s; apply set_induction; clear s; intros.
trans_st (fold f s' (fold f (inter s s') i)).
apply fold_equal; auto with set.
trans_st (fold f s' i).
apply fold_init; auto.
apply fold_1; auto with set.
sym_st; apply fold_1; auto.
rename s'0 into s''.
destruct (In_dec x s').
trans_st (fold f (union s'' s') (f x (fold f (inter s s') i))); auto with set.
apply fold_init; auto.
apply fold_2 with (eqA:=eqA); auto with set.
rewrite inter_iff; intuition.
trans_st (f x (fold f s (fold f s' i))).
trans_st (fold f (union s s') (f x (fold f (inter s s') i))).
apply fold_equal; auto.
apply equal_sym; apply union_Equal with x; auto with set.
trans_st (f x (fold f (union s s') (fold f (inter s s') i))).
apply fold_commutes; auto.
sym_st; apply fold_2 with (eqA:=eqA); auto.
trans_st (f x (fold f (union s s') (fold f (inter s'' s') i))).
apply fold_2 with (eqA:=eqA); auto with set.
trans_st (f x (fold f (union s s') (fold f (inter s s') i))).
apply Comp;auto.
apply fold_init;auto.
apply fold_equal;auto.
apply equal_sym; apply inter_Add_2 with x; auto with set.
trans_st (f x (fold f s (fold f s' i))).
sym_st; apply fold_2 with (eqA:=eqA); auto.
Qed.
End Fold_2.
Section Fold_3.
Variable i:A.
Lemma fold_diff_inter : forall s s',
eqA (fold f (diff s s') (fold f (inter s s') i)) (fold f s i).
Proof.
intros.
trans_st (fold f (union (diff s s') (inter s s'))
(fold f (inter (diff s s') (inter s s')) i)).
sym_st; apply fold_union_inter; auto.
trans_st (fold f s (fold f (inter (diff s s') (inter s s')) i)).
apply fold_equal; auto with set.
apply fold_init; auto.
apply fold_1; auto with set.
Qed.
Lemma fold_union: forall s s', (forall x, ~In x s\/~In x s') ->
eqA (fold f (union s s') i) (fold f s (fold f s' i)).
Proof.
intros.
trans_st (fold f (union s s') (fold f (inter s s') i)).
apply fold_init; auto.
sym_st; apply fold_1; auto with set.
unfold Empty; intro a; generalize (H a); set_iff; tauto.
apply fold_union_inter; auto.
Qed.
End Fold_3.
End Fold.
Lemma fold_plus :
forall s p, fold (fun _ => S) s p = fold (fun _ => S) s 0 + p.
Proof.
assert (st := gen_st nat).
assert (fe : compat_op E.eq (@eq _) (fun _ => S)) by (unfold compat_op; auto).
assert (fp : transpose (@eq _) (fun _:elt => S)) by (unfold transpose; auto).
intros s p; pattern s; apply set_induction; clear s; intros.
rewrite (fold_1 st p (fun _ => S) H).
rewrite (fold_1 st 0 (fun _ => S) H); trivial.
assert (forall p s', Add x s s' -> fold (fun _ => S) s' p = S (fold (fun _ => S) s p)).
change S with ((fun _ => S) x).
intros; apply fold_2; auto.
rewrite H2; auto.
rewrite (H2 0); auto.
rewrite H.
simpl; auto.
Qed.
properties of
cardinal
Lemma empty_cardinal : cardinal empty = 0.
Proof.
rewrite cardinal_fold; apply fold_1; auto.
Qed.
Hint Immediate empty_cardinal cardinal_1 : set.
Lemma singleton_cardinal : forall x, cardinal (singleton x) = 1.
Proof.
intros.
rewrite (singleton_equal_add x).
replace 0 with (cardinal empty); auto with set.
apply cardinal_2 with x; auto with set.
Qed.
Hint Resolve singleton_cardinal: set.
Lemma diff_inter_cardinal :
forall s s', cardinal (diff s s') + cardinal (inter s s') = cardinal s .
Proof.
intros; do 3 rewrite cardinal_fold.
rewrite <- fold_plus.
apply fold_diff_inter with (eqA:=@eq nat); auto.
Qed.
Lemma union_cardinal:
forall s s', (forall x, ~In x s\/~In x s') ->
cardinal (union s s')=cardinal s+cardinal s'.
Proof.
intros; do 3 rewrite cardinal_fold.
rewrite <- fold_plus.
apply fold_union; auto.
Qed.
Lemma subset_cardinal :
forall s s', s[<=]s' -> cardinal s <= cardinal s' .
Proof.
intros.
rewrite <- (diff_inter_cardinal s' s).
rewrite (inter_sym s' s).
rewrite (inter_subset_equal H); auto with arith.
Qed.
Lemma subset_cardinal_lt :
forall s s' x, s[<=]s' -> In x s' -> ~In x s -> cardinal s < cardinal s'.
Proof.
intros.
rewrite <- (diff_inter_cardinal s' s).
rewrite (inter_sym s' s).
rewrite (inter_subset_equal H).
generalize (@cardinal_inv_1 (diff s' s)).
destruct (cardinal (diff s' s)).
intro H2; destruct (H2 (refl_equal _) x).
set_iff; auto.
intros _.
change (0 + cardinal s < S n + cardinal s).
apply Plus.plus_lt_le_compat; auto with arith.
Qed.
Theorem union_inter_cardinal :
forall s s', cardinal (union s s') + cardinal (inter s s') = cardinal s + cardinal s' .
Proof.
intros.
do 4 rewrite cardinal_fold.
do 2 rewrite <- fold_plus.
apply fold_union_inter with (eqA:=@eq nat); auto.
Qed.
Lemma union_cardinal_inter :
forall s s', cardinal (union s s') = cardinal s + cardinal s' - cardinal (inter s s').
Proof.
intros.
rewrite <- union_inter_cardinal.
rewrite Plus.plus_comm.
auto with arith.
Qed.
Lemma union_cardinal_le :
forall s s', cardinal (union s s') <= cardinal s + cardinal s'.
Proof.
intros; generalize (union_inter_cardinal s s').
intros; rewrite <- H; auto with arith.
Qed.
Lemma add_cardinal_1 :
forall s x, In x s -> cardinal (add x s) = cardinal s.
Proof.
auto with set.
Qed.
Lemma add_cardinal_2 :
forall s x, ~In x s -> cardinal (add x s) = S (cardinal s).
Proof.
intros.
do 2 rewrite cardinal_fold.
change S with ((fun _ => S) x);
apply fold_add with (eqA:=@eq nat); auto.
Qed.
Lemma remove_cardinal_1 :
forall s x, In x s -> S (cardinal (remove x s)) = cardinal s.
Proof.
intros.
do 2 rewrite cardinal_fold.
change S with ((fun _ =>S) x).
apply remove_fold_1 with (eqA:=@eq nat); auto.
Qed.
Lemma remove_cardinal_2 :
forall s x, ~In x s -> cardinal (remove x s) = cardinal s.
Proof.
auto with set.
Qed.
Hint Resolve subset_cardinal union_cardinal add_cardinal_1 add_cardinal_2.
End Properties.