Library Coq.Arith.Div

Euclidean division

V7only [Import nat_scope.].
Open Local Scope nat_scope.

Require Le.
Require Euclid_def.
Require Compare_dec.

Implicit Variables Type n,a,b,q,r:nat.

Fixpoint inf_dec [n:nat] : nat->bool :=
  [m:nat] Cases n m of
            O _ => true
            | (S n') O => false
            | (S n') (S m') => (inf_dec n' m')
          end.

Theorem div1 : (b:nat)(gt b O)->(a:nat)(diveucl a b).
  Realizer Fix div1 {div1/2: nat->nat->diveucl :=
    [b,a]Cases a of
           O => (O,O)
           | (S n) =>
             let (q,r) = (div1 b n) in
               if (le_gt_dec b (S r)) then ((S q),O)
                 else (q,(S r))
         end}.
  Program_all.
  Rewrite e.
  Replace b with (S r).
  Simpl.
  Elim plus_n_O; Auto with arith.
  Apply le_antisym; Auto with arith.
  Elim plus_n_Sm; Auto with arith.
Qed.

Theorem div2 : (b:nat)(gt b O)->(a:nat)(diveucl a b).
  Realizer Fix div1 {div1/2: nat->nat->diveucl :=
    [b,a]Cases a of
           O => (O,O)
           | (S n) =>
             let (q,r) = (div1 b n) in
               if (inf_dec b (S r)) :: :: { {(le b (S r))}+{(gt b (S r))} }
                 then ((S q),O)
                 else (q,(S r))
         end}.
  Program_all.
  Rewrite e.
  Replace b with (S r).
  Simpl.
  Elim plus_n_O; Auto with arith.
  Apply le_antisym; Auto with arith.
  Elim plus_n_Sm; Auto with arith.
Qed.