Library Coq.Logic.EqdepFacts
This file defines dependent equality and shows its equivalence with
equality on dependent pairs (inhabiting sigma-types). It derives
the consequence of axiomatizing the invariance by substitution of
reflexive equality proofs and shows the equivalence between the 4
following statements
These statements are independent of the calculus of constructions
References:
Table of contents:
1. Definition of dependent equality and equivalence with equality
2. Eq_rect_eq <-> Eq_dep_eq <-> UIP <-> UIP_refl <-> K
3. Definition of the functor that builds properties of dependent equalities assuming axiom eq_rect_eq
- Invariance by Substitution of Reflexive Equality Proofs.
- Injectivity of Dependent Equality
- Uniqueness of Identity Proofs
- Uniqueness of Reflexive Identity Proofs
- Streicher's Axiom K
These statements are independent of the calculus of constructions
2
.
References:
1
T. Streicher, Semantical Investigations into Intensional Type Theory,
Habilitationsschrift, LMU München, 1993.
2
M. Hofmann, T. Streicher, The groupoid interpretation of type theory,
Proceedings of the meeting Twenty-five years of constructive
type theory, Venice, Oxford University Press, 1998
Table of contents:
1. Definition of dependent equality and equivalence with equality
2. Eq_rect_eq <-> Eq_dep_eq <-> UIP <-> UIP_refl <-> K
3. Definition of the functor that builds properties of dependent equalities assuming axiom eq_rect_eq
Section Dependent_Equality.
Variable U : Type.
Variable P : U -> Type.
Dependent equality
Inductive eq_dep (p:U) (x:P p) : forall q:U, P q -> Prop :=
eq_dep_intro : eq_dep p x p x.
Hint Constructors eq_dep: core v62.
Lemma eq_dep_refl : forall (p:U) (x:P p), eq_dep p x p x.
Proof eq_dep_intro.
Lemma eq_dep_sym :
forall (p q:U) (x:P p) (y:P q), eq_dep p x q y -> eq_dep q y p x.
Proof.
destruct 1; auto.
Qed.
Hint Immediate eq_dep_sym: core v62.
Lemma eq_dep_trans :
forall (p q r:U) (x:P p) (y:P q) (z:P r),
eq_dep p x q y -> eq_dep q y r z -> eq_dep p x r z.
Proof.
destruct 1; auto.
Qed.
Scheme eq_indd := Induction for eq Sort Prop.
Equivalent definition of dependent equality expressed as a non
dependent inductive type
Inductive eq_dep1 (p:U) (x:P p) (q:U) (y:P q) : Prop :=
eq_dep1_intro : forall h:q = p, x = eq_rect q P y p h -> eq_dep1 p x q y.
Lemma eq_dep1_dep :
forall (p:U) (x:P p) (q:U) (y:P q), eq_dep1 p x q y -> eq_dep p x q y.
Proof.
destruct 1 as (eq_qp, H).
destruct eq_qp using eq_indd.
rewrite H.
apply eq_dep_intro.
Qed.
Lemma eq_dep_dep1 :
forall (p q:U) (x:P p) (y:P q), eq_dep p x q y -> eq_dep1 p x q y.
Proof.
destruct 1.
apply eq_dep1_intro with (refl_equal p).
simpl in |- *; trivial.
Qed.
End Dependent_Equality.
Implicit Arguments eq_dep [U P].
Implicit Arguments eq_dep1 [U P].
Dependent equality is equivalent to equality on dependent pairs
Lemma eq_sigS_eq_dep :
forall (U:Type) (P:U -> Type) (p q:U) (x:P p) (y:P q),
existT P p x = existT P q y -> eq_dep p x q y.
Proof.
intros.
dependent rewrite H.
apply eq_dep_intro.
Qed.
Lemma equiv_eqex_eqdep :
forall (U:Type) (P:U -> Type) (p q:U) (x:P p) (y:P q),
existS P p x = existS P q y <-> eq_dep p x q y.
Proof.
split.
apply eq_sigS_eq_dep.
destruct 1; reflexivity.
Qed.
Lemma eq_sigT_eq_dep :
forall (U:Type) (P:U -> Type) (p q:U) (x:P p) (y:P q),
existT P p x = existT P q y -> eq_dep p x q y.
Proof.
intros.
dependent rewrite H.
apply eq_dep_intro.
Qed.
Lemma eq_dep_eq_sigT :
forall (U:Type) (P:U -> Type) (p q:U) (x:P p) (y:P q),
eq_dep p x q y -> existT P p x = existT P q y.
Proof.
destruct 1; reflexivity.
Qed.
Exported hints
Hint Resolve eq_dep_intro: core v62.
Hint Immediate eq_dep_sym: core v62.
Section Equivalences.
Variable U:Type.
Invariance by Substitution of Reflexive Equality Proofs
Definition Eq_rect_eq :=
forall (p:U) (Q:U -> Type) (x:Q p) (h:p = p), x = eq_rect p Q x p h.
Injectivity of Dependent Equality
Definition Eq_dep_eq :=
forall (P:U->Type) (p:U) (x y:P p), eq_dep p x p y -> x = y.
Uniqueness of Identity Proofs (UIP)
Definition UIP_ :=
forall (x y:U) (p1 p2:x = y), p1 = p2.
Uniqueness of Reflexive Identity Proofs
Definition UIP_refl_ :=
forall (x:U) (p:x = x), p = refl_equal x.
Streicher's axiom K
Definition Streicher_K_ :=
forall (x:U) (P:x = x -> Prop), P (refl_equal x) -> forall p:x = x, P p.
Injectivity of Dependent Equality is a consequence of
Invariance by Substitution of Reflexive Equality Proof
Lemma eq_rect_eq__eq_dep1_eq :
Eq_rect_eq -> forall (P:U->Type) (p:U) (x y:P p), eq_dep1 p x p y -> x = y.
Proof.
intro eq_rect_eq.
simple destruct 1; intro.
rewrite <- eq_rect_eq; auto.
Qed.
Lemma eq_rect_eq__eq_dep_eq : Eq_rect_eq -> Eq_dep_eq.
Proof.
intros eq_rect_eq; red; intros.
apply (eq_rect_eq__eq_dep1_eq eq_rect_eq); apply eq_dep_dep1; trivial.
Qed.
Uniqueness of Identity Proofs (UIP) is a consequence of
Injectivity of Dependent Equality
Lemma eq_dep_eq__UIP : Eq_dep_eq -> UIP_.
Proof.
intro eq_dep_eq; red.
intros; apply eq_dep_eq with (P := fun y => x = y).
elim p2 using eq_indd.
elim p1 using eq_indd.
apply eq_dep_intro.
Qed.
Uniqueness of Reflexive Identity Proofs is a direct instance of UIP
Lemma UIP__UIP_refl : UIP_ -> UIP_refl_.
Proof.
intro UIP; red; intros; apply UIP.
Qed.
Streicher's axiom K is a direct consequence of Uniqueness of
Reflexive Identity Proofs
Lemma UIP_refl__Streicher_K : UIP_refl_ -> Streicher_K_.
Proof.
intro UIP_refl; red; intros; rewrite UIP_refl; assumption.
Qed.
We finally recover from K the Invariance by Substitution of
Reflexive Equality Proofs
Lemma Streicher_K__eq_rect_eq : Streicher_K_ -> Eq_rect_eq.
Proof.
intro Streicher_K; red; intros.
apply Streicher_K with (p := h).
reflexivity.
Qed.
Remark: It is reasonable to think that
Typically,
eq_rect_eq
is strictly
stronger than eq_rec_eq
(which is eq_rect_eq
restricted on Set
):
Definition Eq_rec_eq :=
forall (P:U -> Set) (p:U) (x:P p) (h:p = p), x = eq_rec p P x p h.
Typically,
eq_rect_eq
allows to prove UIP and Streicher's K what
does not seem possible with eq_rec_eq
. In particular, the proof of UIP
requires to use eq_rect_eq
on fun y -> x=y
which is in Type
but not
in Set
.
End Equivalences.
Section Corollaries.
Variable U:Type.
UIP implies the injectivity of equality on dependent pairs in Type
Definition Inj_dep_pair :=
forall (P:U -> Type) (p:U) (x y:P p), existT P p x = existT P p y -> x = y.
Lemma eq_dep_eq__inj_pair2 : Eq_dep_eq U -> Inj_dep_pair.
Proof.
intro eq_dep_eq; red; intros.
apply eq_dep_eq.
apply eq_sigS_eq_dep.
assumption.
Qed.
End Corollaries.
Notation Inj_dep_pairS := Inj_dep_pair.
Notation Inj_dep_pairT := Inj_dep_pair.
Notation eq_dep_eq__inj_pairT2 := eq_dep_eq__inj_pair2.
C. Definition of the functor that builds properties of dependent equalities assuming axiom eq_rect_eq
Module Type EqdepElimination.
Axiom eq_rect_eq :
forall (U:Type) (p:U) (Q:U -> Type) (x:Q p) (h:p = p),
x = eq_rect p Q x p h.
End EqdepElimination.
Module EqdepTheory (M:EqdepElimination).
Section Axioms.
Variable U:Type.
Invariance by Substitution of Reflexive Equality Proofs
Lemma eq_rect_eq :
forall (p:U) (Q:U -> Type) (x:Q p) (h:p = p), x = eq_rect p Q x p h.
Proof M.eq_rect_eq U.
Lemma eq_rec_eq :
forall (p:U) (Q:U -> Set) (x:Q p) (h:p = p), x = eq_rec p Q x p h.
Proof (fun p Q => M.eq_rect_eq U p Q).
Injectivity of Dependent Equality
Lemma eq_dep_eq : forall (P:U->Type) (p:U) (x y:P p), eq_dep p x p y -> x = y.
Proof (eq_rect_eq__eq_dep_eq U eq_rect_eq).
Uniqueness of Identity Proofs (UIP) is a consequence of
Injectivity of Dependent Equality
Lemma UIP : forall (x y:U) (p1 p2:x = y), p1 = p2.
Proof (eq_dep_eq__UIP U eq_dep_eq).
Uniqueness of Reflexive Identity Proofs is a direct instance of UIP
Lemma UIP_refl : forall (x:U) (p:x = x), p = refl_equal x.
Proof (UIP__UIP_refl U UIP).
Streicher's axiom K is a direct consequence of Uniqueness of
Reflexive Identity Proofs
Lemma Streicher_K :
forall (x:U) (P:x = x -> Prop), P (refl_equal x) -> forall p:x = x, P p.
Proof (UIP_refl__Streicher_K U UIP_refl).
End Axioms.
UIP implies the injectivity of equality on dependent pairs in Type
Lemma inj_pair2 :
forall (U:Type) (P:U -> Type) (p:U) (x y:P p),
existT P p x = existT P p y -> x = y.
Proof (fun U => eq_dep_eq__inj_pair2 U (eq_dep_eq U)).
Notation inj_pairT2 := inj_pair2.
End EqdepTheory.
Implicit Arguments eq_dep [].
Implicit Arguments eq_dep1 [].