Library Coq.ZArith.Zbinary
Bit vectors interpreted as integers.
Contribution by Jean Duprat (ENS Lyon).
Require Import Bvector.
Require Import ZArith.
Require Export Zpower.
Require Import Omega.
L'évaluation des vecteurs de booléens se font à la fois en binaire et
en complément à deux. Le nombre appartient à Z.
On utilise donc Omega pour faire les calculs dans Z.
De plus, on utilise les fonctions 2^n où n est un naturel, ici la longueur.
two_power_nat =
n:nat
(POS (shift_nat n xH))
: nat->Z
two_power_nat_S
: (n:nat)`(two_power_nat (S n)) = 2*(two_power_nat n)`
Z_lt_ge_dec
: (x,y:Z){`x < y`}+{`x >= y`}
Section VALUE_OF_BOOLEAN_VECTORS.
Les calculs sont effectués dans la convention positive usuelle.
Les valeurs correspondent soit à l'écriture binaire (nat),
soit au complément à deux (int).
On effectue le calcul suivant le schéma de Horner.
Le complément à deux n'a de sens que sur les vecteurs de taille
supérieure ou égale à un, le bit de signe étant évalué négativement.
Definition bit_value (b:bool) : Z :=
match b with
| true => 1%Z
| false => 0%Z
end.
Lemma binary_value : forall n:nat, Bvector n -> Z.
Proof.
simple induction n; intros.
exact 0%Z.
inversion H0.
exact (bit_value a + 2 * H H2)%Z.
Defined.
Lemma two_compl_value : forall n:nat, Bvector (S n) -> Z.
Proof.
simple induction n; intros.
inversion H.
exact (- bit_value a)%Z.
inversion H0.
exact (bit_value a + 2 * H H2)%Z.
Defined.
End VALUE_OF_BOOLEAN_VECTORS.
Section ENCODING_VALUE.
On calcule la valeur binaire selon un schema de Horner.
Le calcul s'arrete à la longueur du vecteur sans vérification.
On definit une fonction Zmod2 calquee sur Zdiv2 mais donnant le quotient
de la division z=2q+r avec 0<=r<=1.
La valeur en complément à deux est calculée selon un schema de Horner
avec Zmod2, le paramètre est la taille moins un.
Definition Zmod2 (z:Z) :=
match z with
| Z0 => 0%Z
| Zpos p => match p with
| xI q => Zpos q
| xO q => Zpos q
| xH => 0%Z
end
| Zneg p =>
match p with
| xI q => (Zneg q - 1)%Z
| xO q => Zneg q
| xH => (-1)%Z
end
end.
Lemma Zmod2_twice :
forall z:Z, z = (2 * Zmod2 z + bit_value (Zeven.Zodd_bool z))%Z.
Proof.
destruct z; simpl in |- *.
trivial.
destruct p; simpl in |- *; trivial.
destruct p; simpl in |- *.
destruct p as [p| p| ]; simpl in |- *.
rewrite <- (Pdouble_minus_one_o_succ_eq_xI p); trivial.
trivial.
trivial.
trivial.
trivial.
Qed.
Lemma Z_to_binary : forall n:nat, Z -> Bvector n.
Proof.
simple induction n; intros.
exact Bnil.
exact (Bcons (Zeven.Zodd_bool H0) n0 (H (Zeven.Zdiv2 H0))).
Defined.
Lemma Z_to_two_compl : forall n:nat, Z -> Bvector (S n).
Proof.
simple induction n; intros.
exact (Bcons (Zeven.Zodd_bool H) 0 Bnil).
exact (Bcons (Zeven.Zodd_bool H0) (S n0) (H (Zmod2 H0))).
Defined.
End ENCODING_VALUE.
Section Z_BRIC_A_BRAC.
Bibliotheque de lemmes utiles dans la section suivante.
Utilise largement ZArith.
Mériterait d'être récrite.
Lemma binary_value_Sn :
forall (n:nat) (b:bool) (bv:Bvector n),
binary_value (S n) (Vcons bool b n bv) =
(bit_value b + 2 * binary_value n bv)%Z.
Proof.
intros; auto.
Qed.
Lemma Z_to_binary_Sn :
forall (n:nat) (b:bool) (z:Z),
(z >= 0)%Z ->
Z_to_binary (S n) (bit_value b + 2 * z) = Bcons b n (Z_to_binary n z).
Proof.
destruct b; destruct z; simpl in |- *; auto.
intro H; elim H; trivial.
Qed.
Lemma binary_value_pos :
forall (n:nat) (bv:Bvector n), (binary_value n bv >= 0)%Z.
Proof.
induction bv as [| a n v IHbv]; simpl in |- *.
omega.
destruct a; destruct (binary_value n v); simpl in |- *; auto.
auto with zarith.
Qed.
Lemma two_compl_value_Sn :
forall (n:nat) (bv:Bvector (S n)) (b:bool),
two_compl_value (S n) (Bcons b (S n) bv) =
(bit_value b + 2 * two_compl_value n bv)%Z.
Proof.
intros; auto.
Qed.
Lemma Z_to_two_compl_Sn :
forall (n:nat) (b:bool) (z:Z),
Z_to_two_compl (S n) (bit_value b + 2 * z) =
Bcons b (S n) (Z_to_two_compl n z).
Proof.
destruct b; destruct z as [| p| p]; auto.
destruct p as [p| p| ]; auto.
destruct p as [p| p| ]; simpl in |- *; auto.
intros; rewrite (Psucc_o_double_minus_one_eq_xO p); trivial.
Qed.
Lemma Z_to_binary_Sn_z :
forall (n:nat) (z:Z),
Z_to_binary (S n) z =
Bcons (Zeven.Zodd_bool z) n (Z_to_binary n (Zeven.Zdiv2 z)).
Proof.
intros; auto.
Qed.
Lemma Z_div2_value :
forall z:Z,
(z >= 0)%Z -> (bit_value (Zeven.Zodd_bool z) + 2 * Zeven.Zdiv2 z)%Z = z.
Proof.
destruct z as [| p| p]; auto.
destruct p; auto.
intro H; elim H; trivial.
Qed.
Lemma Pdiv2 : forall z:Z, (z >= 0)%Z -> (Zeven.Zdiv2 z >= 0)%Z.
Proof.
destruct z as [| p| p].
auto.
destruct p; auto.
simpl in |- *; intros; omega.
intro H; elim H; trivial.
Qed.
Lemma Zdiv2_two_power_nat :
forall (z:Z) (n:nat),
(z >= 0)%Z ->
(z < two_power_nat (S n))%Z -> (Zeven.Zdiv2 z < two_power_nat n)%Z.
Proof.
intros.
cut (2 * Zeven.Zdiv2 z < 2 * two_power_nat n)%Z; intros.
omega.
rewrite <- two_power_nat_S.
destruct (Zeven.Zeven_odd_dec z); intros.
rewrite <- Zeven.Zeven_div2; auto.
generalize (Zeven.Zodd_div2 z H z0); omega.
Qed.
Lemma Z_to_two_compl_Sn_z :
forall (n:nat) (z:Z),
Z_to_two_compl (S n) z =
Bcons (Zeven.Zodd_bool z) (S n) (Z_to_two_compl n (Zmod2 z)).
Proof.
intros; auto.
Qed.
Lemma Zeven_bit_value :
forall z:Z, Zeven.Zeven z -> bit_value (Zeven.Zodd_bool z) = 0%Z.
Proof.
destruct z; unfold bit_value in |- *; auto.
destruct p; tauto || (intro H; elim H).
destruct p; tauto || (intro H; elim H).
Qed.
Lemma Zodd_bit_value :
forall z:Z, Zeven.Zodd z -> bit_value (Zeven.Zodd_bool z) = 1%Z.
Proof.
destruct z; unfold bit_value in |- *; auto.
intros; elim H.
destruct p; tauto || (intros; elim H).
destruct p; tauto || (intros; elim H).
Qed.
Lemma Zge_minus_two_power_nat_S :
forall (n:nat) (z:Z),
(z >= - two_power_nat (S n))%Z -> (Zmod2 z >= - two_power_nat n)%Z.
Proof.
intros n z; rewrite (two_power_nat_S n).
generalize (Zmod2_twice z).
destruct (Zeven.Zeven_odd_dec z) as [H| H].
rewrite (Zeven_bit_value z H); intros; omega.
rewrite (Zodd_bit_value z H); intros; omega.
Qed.
Lemma Zlt_two_power_nat_S :
forall (n:nat) (z:Z),
(z < two_power_nat (S n))%Z -> (Zmod2 z < two_power_nat n)%Z.
Proof.
intros n z; rewrite (two_power_nat_S n).
generalize (Zmod2_twice z).
destruct (Zeven.Zeven_odd_dec z) as [H| H].
rewrite (Zeven_bit_value z H); intros; omega.
rewrite (Zodd_bit_value z H); intros; omega.
Qed.
End Z_BRIC_A_BRAC.
Section COHERENT_VALUE.
On vérifie que dans l'intervalle de définition les fonctions sont
réciproques l'une de l'autre. Elles utilisent les lemmes du bric-a-brac.
Lemma binary_to_Z_to_binary :
forall (n:nat) (bv:Bvector n), Z_to_binary n (binary_value n bv) = bv.
Proof.
induction bv as [| a n bv IHbv].
auto.
rewrite binary_value_Sn.
rewrite Z_to_binary_Sn.
rewrite IHbv; trivial.
apply binary_value_pos.
Qed.
Lemma two_compl_to_Z_to_two_compl :
forall (n:nat) (bv:Bvector n) (b:bool),
Z_to_two_compl n (two_compl_value n (Bcons b n bv)) = Bcons b n bv.
Proof.
induction bv as [| a n bv IHbv]; intro b.
destruct b; auto.
rewrite two_compl_value_Sn.
rewrite Z_to_two_compl_Sn.
rewrite IHbv; trivial.
Qed.
Lemma Z_to_binary_to_Z :
forall (n:nat) (z:Z),
(z >= 0)%Z ->
(z < two_power_nat n)%Z -> binary_value n (Z_to_binary n z) = z.
Proof.
induction n as [| n IHn].
unfold two_power_nat, shift_nat in |- *; simpl in |- *; intros; omega.
intros; rewrite Z_to_binary_Sn_z.
rewrite binary_value_Sn.
rewrite IHn.
apply Z_div2_value; auto.
apply Pdiv2; trivial.
apply Zdiv2_two_power_nat; trivial.
Qed.
Lemma Z_to_two_compl_to_Z :
forall (n:nat) (z:Z),
(z >= - two_power_nat n)%Z ->
(z < two_power_nat n)%Z -> two_compl_value n (Z_to_two_compl n z) = z.
Proof.
induction n as [| n IHn].
unfold two_power_nat, shift_nat in |- *; simpl in |- *; intros.
assert (z = (-1)%Z \/ z = 0%Z). omega.
intuition; subst z; trivial.
intros; rewrite Z_to_two_compl_Sn_z.
rewrite two_compl_value_Sn.
rewrite IHn.
generalize (Zmod2_twice z); omega.
apply Zge_minus_two_power_nat_S; auto.
apply Zlt_two_power_nat_S; auto.
Qed.
End COHERENT_VALUE.