Library Coq.Logic.Classical_Prop

Classical Propositional Logic

Require Import ClassicalFacts.

Hint Unfold not: core.

Axiom classic : forall P:Prop, P \/ ~ P.

Lemma NNPP : forall p:Prop, ~ ~ p -> p.
Proof.
unfold not in |- *; intros; elim (classic p); auto.
intro NP; elim (H NP).
Qed.

Peirce's law states forall P Q:Prop, ((P -> Q) -> P) -> P. Thanks to forall P, False -> P, it is equivalent to the following form

Lemma Peirce : forall P:Prop, ((P -> False) -> P) -> P.
Proof.
intros P H; destruct (classic P); auto.
Qed.

Lemma not_imply_elim : forall P Q:Prop, ~ (P -> Q) -> P.
Proof.
intros; apply NNPP; red in |- *.
intro; apply H; intro; absurd P; trivial.
Qed.

Lemma not_imply_elim2 : forall P Q:Prop, ~ (P -> Q) -> ~ Q.
Proof.
tauto.
Qed.

Lemma imply_to_or : forall P Q:Prop, (P -> Q) -> ~ P \/ Q.
Proof.
intros; elim (classic P); auto.
Qed.

Lemma imply_to_and : forall P Q:Prop, ~ (P -> Q) -> P /\ ~ Q.
Proof.
intros; split.
apply not_imply_elim with Q; trivial.
apply not_imply_elim2 with P; trivial.
Qed.

Lemma or_to_imply : forall P Q:Prop, ~ P \/ Q -> P -> Q.
Proof.
tauto.
Qed.

Lemma not_and_or : forall P Q:Prop, ~ (P /\ Q) -> ~ P \/ ~ Q.
Proof.
intros; elim (classic P); auto.
Qed.

Lemma or_not_and : forall P Q:Prop, ~ P \/ ~ Q -> ~ (P /\ Q).
Proof.
simple induction 1; red in |- *; simple induction 2; auto.
Qed.

Lemma not_or_and : forall P Q:Prop, ~ (P \/ Q) -> ~ P /\ ~ Q.
Proof.
tauto.
Qed.

Lemma and_not_or : forall P Q:Prop, ~ P /\ ~ Q -> ~ (P \/ Q).
Proof.
tauto.
Qed.

Lemma imply_and_or : forall P Q:Prop, (P -> Q) -> P \/ Q -> Q.
Proof.
tauto.
Qed.

Lemma imply_and_or2 : forall P Q R:Prop, (P -> Q) -> P \/ R -> Q \/ R.
Proof.
tauto.
Qed.

Lemma proof_irrelevance : forall (P:Prop) (p1 p2:P), p1 = p2.
Proof proof_irrelevance_cci classic.

Ltac classical_right := match goal with
 | _:_ |-?X1 \/ _ => (elim (classic X1);intro;[left;trivial|right])
end.

Ltac classical_left := match goal with
| _:_ |- _ \/?X1 => (elim (classic X1);intro;[right;trivial|left])
end.

Require Export EqdepFacts.

Module Eq_rect_eq.

Lemma eq_rect_eq :
  forall (U:Type) (p:U) (Q:U -> Type) (x:Q p) (h:p = p), x = eq_rect p Q x p h.
Proof.
intros; rewrite proof_irrelevance with (p1:=h) (p2:=refl_equal p); reflexivity.
Qed.

End Eq_rect_eq.

Module EqdepTheory := EqdepTheory(Eq_rect_eq).
Export EqdepTheory.