Library Coq.Wellfounded.Transitive_Closure

Author: Bruno Barras

Require Import Relation_Definitions.
Require Import Relation_Operators.

Section Wf_Transitive_Closure.
  Variable A : Type.
  Variable R : relation A.

  Notation trans_clos := (clos_trans A R).

  Lemma incl_clos_trans : inclusion A R trans_clos.
    red in |- *; auto with sets.
  Qed.

  Lemma Acc_clos_trans : forall x:A, Acc R x -> Acc trans_clos x.
    induction 1 as [x0 _ H1].
    apply Acc_intro.
    intros y H2.
    induction H2; auto with sets.
    apply Acc_inv with y; auto with sets.
  Qed.

  Hint Resolve Acc_clos_trans.

  Lemma Acc_inv_trans : forall x y:A, trans_clos y x -> Acc R x -> Acc R y.
  Proof.
    induction 1 as [| x y]; auto with sets.
    intro; apply Acc_inv with y; assumption.
  Qed.

  Theorem wf_clos_trans : well_founded R -> well_founded trans_clos.
  Proof.
    unfold well_founded in |- *; auto with sets.
  Qed.

End Wf_Transitive_Closure.