Library Coq.Reals.Rprod

Require Import Compare.
Require Import Rbase.
Require Import Rfunctions.
Require Import Rseries.
Require Import PartSum.
Require Import Binomial.
Open Local Scope R_scope.

TT Ak; 1<=k<=N
Boxed Fixpoint prod_f_SO (An:nat -> R) (N:nat) {struct N} : R :=
  match N with
    | O => 1
    | S p => prod_f_SO An p * An (S p)
  end.

Lemma prod_SO_split :
  forall (An:nat -> R) (n k:nat),
    (k <= n)%nat ->
    prod_f_SO An n =
    prod_f_SO An k * prod_f_SO (fun l:nat => An (k + l)%nat) (n - k).
Proof.
  intros; induction n as [| n Hrecn].
  cut (k = 0%nat);
    [ intro; rewrite H0; simpl in |- *; ring | inversion H; reflexivity ].
  cut (k = S n \/ (k <= n)%nat).
  intro; elim H0; intro.
  rewrite H1; simpl in |- *; rewrite <- minus_n_n; simpl in |- *; ring.
  replace (S n - k)%nat with (S (n - k)).
  simpl in |- *; replace (k + S (n - k))%nat with (S n).
  rewrite Hrecn; [ ring | assumption ].
  omega.
  omega.
  omega.
Qed.

Lemma prod_SO_pos :
  forall (An:nat -> R) (N:nat),
    (forall n:nat, (n <= N)%nat -> 0 <= An n) -> 0 <= prod_f_SO An N.
Proof.
  intros; induction N as [| N HrecN].
  simpl in |- *; left; apply Rlt_0_1.
  simpl in |- *; apply Rmult_le_pos.
  apply HrecN; intros; apply H; apply le_trans with N;
    [ assumption | apply le_n_Sn ].
  apply H; apply le_n.
Qed.

Lemma prod_SO_Rle :
  forall (An Bn:nat -> R) (N:nat),
    (forall n:nat, (n <= N)%nat -> 0 <= An n <= Bn n) ->
    prod_f_SO An N <= prod_f_SO Bn N.
Proof.
  intros; induction N as [| N HrecN].
  right; reflexivity.
  simpl in |- *; apply Rle_trans with (prod_f_SO An N * Bn (S N)).
  apply Rmult_le_compat_l.
  apply prod_SO_pos; intros; elim (H n (le_trans _ _ _ H0 (le_n_Sn N))); intros;
    assumption.
  elim (H (S N) (le_n (S N))); intros; assumption.
  do 2 rewrite <- (Rmult_comm (Bn (S N))); apply Rmult_le_compat_l.
  elim (H (S N) (le_n (S N))); intros.
  apply Rle_trans with (An (S N)); assumption.
  apply HrecN; intros; elim (H n (le_trans _ _ _ H0 (le_n_Sn N))); intros;
    split; assumption.
Qed.

Application to factorial
Lemma fact_prodSO :
  forall n:nat, INR (fact n) = prod_f_SO (fun k:nat => INR k) n.
Proof.
  intro; induction n as [| n Hrecn].
  reflexivity.
  change (INR (S n * fact n) = prod_f_SO (fun k:nat => INR k) (S n)) in |- *.
  rewrite mult_INR; rewrite Rmult_comm; rewrite Hrecn; reflexivity.
Qed.

Lemma le_n_2n : forall n:nat, (n <= 2 * n)%nat.
Proof.
  simple induction n.
  replace (2 * 0)%nat with 0%nat; [ apply le_n | ring ].
  intros; replace (2 * S n0)%nat with (S (S (2 * n0))).
  apply le_n_S; apply le_S; assumption.
  replace (S (S (2 * n0))) with (2 * n0 + 2)%nat; [ idtac | ring ].
  replace (S n0) with (n0 + 1)%nat; [ idtac | ring ].
  ring.
Qed.

We prove that (N!)^2<=(2N-k)!*k! forall k in |O;2N|
Lemma RfactN_fact2N_factk :
  forall N k:nat,
    (k <= 2 * N)%nat ->
    Rsqr (INR (fact N)) <= INR (fact (2 * N - k)) * INR (fact k).
Proof.
  intros; unfold Rsqr in |- *; repeat rewrite fact_prodSO.
  cut ((k <= N)%nat \/ (N <= k)%nat).
  intro; elim H0; intro.
  rewrite (prod_SO_split (fun l:nat => INR l) (2 * N - k) N).
  rewrite Rmult_assoc; apply Rmult_le_compat_l.
  apply prod_SO_pos; intros; apply pos_INR.
  replace (2 * N - k - N)%nat with (N - k)%nat.
  rewrite Rmult_comm; rewrite (prod_SO_split (fun l:nat => INR l) N k).
  apply Rmult_le_compat_l.
  apply prod_SO_pos; intros; apply pos_INR.
  apply prod_SO_Rle; intros; split.
  apply pos_INR.
  apply le_INR; apply plus_le_compat_r; assumption.
  assumption.
  omega.
  omega.
  rewrite <- (Rmult_comm (prod_f_SO (fun l:nat => INR l) k));
    rewrite (prod_SO_split (fun l:nat => INR l) k N).
  rewrite Rmult_assoc; apply Rmult_le_compat_l.
  apply prod_SO_pos; intros; apply pos_INR.
  rewrite Rmult_comm;
    rewrite (prod_SO_split (fun l:nat => INR l) N (2 * N - k)).
  apply Rmult_le_compat_l.
  apply prod_SO_pos; intros; apply pos_INR.
  replace (N - (2 * N - k))%nat with (k - N)%nat.
  apply prod_SO_Rle; intros; split.
  apply pos_INR.
  apply le_INR; apply plus_le_compat_r.
  omega.
  omega.
  omega.
  assumption.
  omega.
Qed.

Lemma INR_fact_lt_0 : forall n:nat, 0 < INR (fact n).
Proof.
  intro; apply lt_INR_0; apply neq_O_lt; red in |- *; intro;
    elim (fact_neq_0 n); symmetry in |- *; assumption.
Qed.

We have the following inequality : (C 2N k) <= (C 2N N) forall k in |O;2N|
Lemma C_maj : forall N k:nat, (k <= 2 * N)%nat -> C (2 * N) k <= C (2 * N) N.
Proof.
  intros; unfold C in |- *; unfold Rdiv in |- *; apply Rmult_le_compat_l.
  apply pos_INR.
  replace (2 * N - N)%nat with N.
  apply Rmult_le_reg_l with (INR (fact N) * INR (fact N)).
  apply Rmult_lt_0_compat; apply INR_fact_lt_0.
  rewrite <- Rinv_r_sym.
  rewrite Rmult_comm;
    apply Rmult_le_reg_l with (INR (fact k) * INR (fact (2 * N - k))).
  apply Rmult_lt_0_compat; apply INR_fact_lt_0.
  rewrite Rmult_1_r; rewrite <- mult_INR; rewrite <- Rmult_assoc;
    rewrite <- Rinv_r_sym.
  rewrite Rmult_1_l; rewrite mult_INR; rewrite (Rmult_comm (INR (fact k)));
    replace (INR (fact N) * INR (fact N)) with (Rsqr (INR (fact N))).
  apply RfactN_fact2N_factk.
  assumption.
  reflexivity.
  rewrite mult_INR; apply prod_neq_R0; apply INR_fact_neq_0.
  apply prod_neq_R0; apply INR_fact_neq_0.
  omega.
Qed.