Library Coq.ZArith.Znumtheory
Require Import ZArith_base.
Require Import ZArithRing.
Require Import Zcomplements.
Require Import Zdiv.
Require Import Ndigits.
Require Import Wf_nat.
Open Local Scope Z_scope.
This file contains some notions of number theory upon Z numbers:
- a divisibility predicate
Zdivide
- a gcd predicate
gcd
- Euclid algorithm
euclid
- a relatively prime predicate
rel_prime
- a prime predicate
prime
- an efficient
Zgcd
function
Inductive Zdivide (a b:Z) : Prop :=
Zdivide_intro : forall q:Z, b = q * a -> Zdivide a b.
Syntax for divisibility
Notation "( a | b )" := (Zdivide a b) (at level 0) : Z_scope.
Results concerning divisibility
Lemma Zdivide_refl : forall a:Z, (a | a).
Proof.
intros; apply Zdivide_intro with 1; ring.
Qed.
Lemma Zone_divide : forall a:Z, (1 | a).
Proof.
intros; apply Zdivide_intro with a; ring.
Qed.
Lemma Zdivide_0 : forall a:Z, (a | 0).
Proof.
intros; apply Zdivide_intro with 0; ring.
Qed.
Hint Resolve Zdivide_refl Zone_divide Zdivide_0: zarith.
Lemma Zmult_divide_compat_l : forall a b c:Z, (a | b) -> (c * a | c * b).
Proof.
simple induction 1; intros; apply Zdivide_intro with q.
rewrite H0; ring.
Qed.
Lemma Zmult_divide_compat_r : forall a b c:Z, (a | b) -> (a * c | b * c).
Proof.
intros a b c; rewrite (Zmult_comm a c); rewrite (Zmult_comm b c).
apply Zmult_divide_compat_l; trivial.
Qed.
Hint Resolve Zmult_divide_compat_l Zmult_divide_compat_r: zarith.
Lemma Zdivide_plus_r : forall a b c:Z, (a | b) -> (a | c) -> (a | b + c).
Proof.
simple induction 1; intros q Hq; simple induction 1; intros q' Hq'.
apply Zdivide_intro with (q + q').
rewrite Hq; rewrite Hq'; ring.
Qed.
Lemma Zdivide_opp_r : forall a b:Z, (a | b) -> (a | - b).
Proof.
simple induction 1; intros; apply Zdivide_intro with (- q).
rewrite H0; ring.
Qed.
Lemma Zdivide_opp_r_rev : forall a b:Z, (a | - b) -> (a | b).
Proof.
intros; replace b with (- - b). apply Zdivide_opp_r; trivial. ring.
Qed.
Lemma Zdivide_opp_l : forall a b:Z, (a | b) -> (- a | b).
Proof.
simple induction 1; intros; apply Zdivide_intro with (- q).
rewrite H0; ring.
Qed.
Lemma Zdivide_opp_l_rev : forall a b:Z, (- a | b) -> (a | b).
Proof.
intros; replace a with (- - a). apply Zdivide_opp_l; trivial. ring.
Qed.
Lemma Zdivide_minus_l : forall a b c:Z, (a | b) -> (a | c) -> (a | b - c).
Proof.
simple induction 1; intros q Hq; simple induction 1; intros q' Hq'.
apply Zdivide_intro with (q - q').
rewrite Hq; rewrite Hq'; ring.
Qed.
Lemma Zdivide_mult_l : forall a b c:Z, (a | b) -> (a | b * c).
Proof.
simple induction 1; intros q Hq; apply Zdivide_intro with (q * c).
rewrite Hq; ring.
Qed.
Lemma Zdivide_mult_r : forall a b c:Z, (a | c) -> (a | b * c).
Proof.
simple induction 1; intros q Hq; apply Zdivide_intro with (q * b).
rewrite Hq; ring.
Qed.
Lemma Zdivide_factor_r : forall a b:Z, (a | a * b).
Proof.
intros; apply Zdivide_intro with b; ring.
Qed.
Lemma Zdivide_factor_l : forall a b:Z, (a | b * a).
Proof.
intros; apply Zdivide_intro with b; ring.
Qed.
Hint Resolve Zdivide_plus_r Zdivide_opp_r Zdivide_opp_r_rev Zdivide_opp_l
Zdivide_opp_l_rev Zdivide_minus_l Zdivide_mult_l Zdivide_mult_r
Zdivide_factor_r Zdivide_factor_l: zarith.
Auxiliary result.
Lemma Zmult_one : forall x y:Z, x >= 0 -> x * y = 1 -> x = 1.
Proof.
intros x y H H0; destruct (Zmult_1_inversion_l _ _ H0) as [Hpos| Hneg].
assumption.
rewrite Hneg in H; simpl in H.
contradiction (Zle_not_lt 0 (-1)).
apply Zge_le; assumption.
apply Zorder.Zlt_neg_0.
Qed.
Only
1
and -1
divide 1
.
Lemma Zdivide_1 : forall x:Z, (x | 1) -> x = 1 \/ x = -1.
Proof.
simple induction 1; intros.
elim (Z_lt_ge_dec 0 x); [ left | right ].
apply Zmult_one with q; auto with zarith; rewrite H0; ring.
assert (- x = 1); auto with zarith.
apply Zmult_one with (- q); auto with zarith; rewrite H0; ring.
Qed.
If
a
divides b
and b
divides a
then a
is b
or -b
.
Lemma Zdivide_antisym : forall a b:Z, (a | b) -> (b | a) -> a = b \/ a = - b.
Proof.
simple induction 1; intros.
inversion H1.
rewrite H0 in H2; clear H H1.
case (Z_zerop a); intro.
left; rewrite H0; rewrite e; ring.
assert (Hqq0 : q0 * q = 1).
apply Zmult_reg_l with a.
assumption.
ring_simplify.
pattern a at 2 in |- *; rewrite H2; ring.
assert (q | 1).
rewrite <- Hqq0; auto with zarith.
elim (Zdivide_1 q H); intros.
rewrite H1 in H0; left; omega.
rewrite H1 in H0; right; omega.
Qed.
If
a
divides b
and b<>0
then |a| <= |b|
.
Lemma Zdivide_bounds : forall a b:Z, (a | b) -> b <> 0 -> Zabs a <= Zabs b.
Proof.
simple induction 1; intros.
assert (Zabs b = Zabs q * Zabs a).
subst; apply Zabs_Zmult.
rewrite H2.
assert (H3 := Zabs_pos q).
assert (H4 := Zabs_pos a).
assert (Zabs q * Zabs a >= 1 * Zabs a); auto with zarith.
apply Zmult_ge_compat; auto with zarith.
elim (Z_lt_ge_dec (Zabs q) 1); [ intros | auto with zarith ].
assert (Zabs q = 0).
omega.
assert (q = 0).
rewrite <- (Zabs_Zsgn q).
rewrite H5; auto with zarith.
subst q; omega.
Qed.
There is no unicity of the gcd; hence we define the predicate
gcd a b d
expressing that d
is a gcd of a
and b
.
(We show later that the gcd
is actually unique if we discard its sign.)
Inductive Zis_gcd (a b d:Z) : Prop :=
Zis_gcd_intro :
(d | a) ->
(d | b) -> (forall x:Z, (x | a) -> (x | b) -> (x | d)) -> Zis_gcd a b d.
Trivial properties of
gcd
Lemma Zis_gcd_sym : forall a b d:Z, Zis_gcd a b d -> Zis_gcd b a d.
Proof.
simple induction 1; constructor; intuition.
Qed.
Lemma Zis_gcd_0 : forall a:Z, Zis_gcd a 0 a.
Proof.
constructor; auto with zarith.
Qed.
Lemma Zis_gcd_1 : forall a, Zis_gcd a 1 1.
Proof.
constructor; auto with zarith.
Qed.
Lemma Zis_gcd_refl : forall a, Zis_gcd a a a.
Proof.
constructor; auto with zarith.
Qed.
Lemma Zis_gcd_minus : forall a b d:Z, Zis_gcd a (- b) d -> Zis_gcd b a d.
Proof.
simple induction 1; constructor; intuition.
Qed.
Lemma Zis_gcd_opp : forall a b d:Z, Zis_gcd a b d -> Zis_gcd b a (- d).
Proof.
simple induction 1; constructor; intuition.
Qed.
Lemma Zis_gcd_0_abs : forall a:Z, Zis_gcd 0 a (Zabs a).
Proof.
intros a.
apply Zabs_ind.
intros; apply Zis_gcd_sym; apply Zis_gcd_0; auto.
intros; apply Zis_gcd_opp; apply Zis_gcd_0; auto.
Qed.
Hint Resolve Zis_gcd_sym Zis_gcd_0 Zis_gcd_minus Zis_gcd_opp: zarith.
Euclid's algorithm to compute the
gcd
mainly relies on
the following property.
Lemma Zis_gcd_for_euclid :
forall a b d q:Z, Zis_gcd b (a - q * b) d -> Zis_gcd a b d.
Proof.
simple induction 1; constructor; intuition.
replace a with (a - q * b + q * b). auto with zarith. ring.
Qed.
Lemma Zis_gcd_for_euclid2 :
forall b d q r:Z, Zis_gcd r b d -> Zis_gcd b (b * q + r) d.
Proof.
simple induction 1; constructor; intuition.
apply H2; auto.
replace r with (b * q + r - b * q). auto with zarith. ring.
Qed.
We implement the extended version of Euclid's algorithm,
i.e. the one computing Bezout's coefficients as it computes
the
gcd
. We follow the algorithm given in Knuth's
"Art of Computer Programming", vol 2, page 325.
Section extended_euclid_algorithm.
Variables a b : Z.
The specification of Euclid's algorithm is the existence of
u
, v
and d
such that ua+vb=d
and (gcd a b d)
.
Inductive Euclid : Set :=
Euclid_intro :
forall u v d:Z, u * a + v * b = d -> Zis_gcd a b d -> Euclid.
The recursive part of Euclid's algorithm uses well-founded
recursion of non-negative integers. It maintains 6 integers
u1,u2,u3,v1,v2,v3
such that the following invariant holds:
u1*a+u2*b=u3
and v1*a+v2*b=v3
and gcd(u2,v3)=gcd(a,b)
.
Lemma euclid_rec :
forall v3:Z,
0 <= v3 ->
forall u1 u2 u3 v1 v2:Z,
u1 * a + u2 * b = u3 ->
v1 * a + v2 * b = v3 ->
(forall d:Z, Zis_gcd u3 v3 d -> Zis_gcd a b d) -> Euclid.
Proof.
intros v3 Hv3; generalize Hv3; pattern v3 in |- *.
apply Zlt_0_rec.
clear v3 Hv3; intros.
elim (Z_zerop x); intro.
apply Euclid_intro with (u := u1) (v := u2) (d := u3).
assumption.
apply H3.
rewrite a0; auto with zarith.
set (q := u3 / x) in *.
assert (Hq : 0 <= u3 - q * x < x).
replace (u3 - q * x) with (u3 mod x).
apply Z_mod_lt; omega.
assert (xpos : x > 0). omega.
generalize (Z_div_mod_eq u3 x xpos).
unfold q in |- *.
intro eq; pattern u3 at 2 in |- *; rewrite eq; ring.
apply (H (u3 - q * x) Hq (proj1 Hq) v1 v2 x (u1 - q * v1) (u2 - q * v2)).
tauto.
replace ((u1 - q * v1) * a + (u2 - q * v2) * b) with
(u1 * a + u2 * b - q * (v1 * a + v2 * b)).
rewrite H1; rewrite H2; trivial.
ring.
intros; apply H3.
apply Zis_gcd_for_euclid with q; assumption.
assumption.
Qed.
We get Euclid's algorithm by applying
euclid_rec
on
1,0,a,0,1,b
when b>=0
and 1,0,a,0,-1,-b
when b<0
.
Lemma euclid : Euclid.
Proof.
case (Z_le_gt_dec 0 b); intro.
intros;
apply euclid_rec with
(u1 := 1) (u2 := 0) (u3 := a) (v1 := 0) (v2 := 1) (v3 := b);
auto with zarith; ring.
intros;
apply euclid_rec with
(u1 := 1) (u2 := 0) (u3 := a) (v1 := 0) (v2 := -1) (v3 := - b);
auto with zarith; try ring.
Qed.
End extended_euclid_algorithm.
Theorem Zis_gcd_uniqueness_apart_sign :
forall a b d d':Z, Zis_gcd a b d -> Zis_gcd a b d' -> d = d' \/ d = - d'.
Proof.
simple induction 1.
intros H1 H2 H3; simple induction 1; intros.
generalize (H3 d' H4 H5); intro Hd'd.
generalize (H6 d H1 H2); intro Hdd'.
exact (Zdivide_antisym d d' Hdd' Hd'd).
Qed.
Inductive Bezout (a b d:Z) : Prop :=
Bezout_intro : forall u v:Z, u * a + v * b = d -> Bezout a b d.
Existence of Bezout's coefficients for the
gcd
of a
and b
Lemma Zis_gcd_bezout : forall a b d:Z, Zis_gcd a b d -> Bezout a b d.
Proof.
intros a b d Hgcd.
elim (euclid a b); intros u v d0 e g.
generalize (Zis_gcd_uniqueness_apart_sign a b d d0 Hgcd g).
intro H; elim H; clear H; intros.
apply Bezout_intro with u v.
rewrite H; assumption.
apply Bezout_intro with (- u) (- v).
rewrite H; rewrite <- e; ring.
Qed.
gcd of
ca
and cb
is c gcd(a,b)
.
Lemma Zis_gcd_mult :
forall a b c d:Z, Zis_gcd a b d -> Zis_gcd (c * a) (c * b) (c * d).
Proof.
intros a b c d; simple induction 1; constructor; intuition.
elim (Zis_gcd_bezout a b d H); intros.
elim H3; intros.
elim H4; intros.
apply Zdivide_intro with (u * q + v * q0).
rewrite <- H5.
replace (c * (u * a + v * b)) with (u * (c * a) + v * (c * b)).
rewrite H6; rewrite H7; ring.
ring.
Qed.
Definition rel_prime (a b:Z) : Prop := Zis_gcd a b 1.
Bezout's theorem:
a
and b
are relatively prime if and
only if there exist u
and v
such that ua+vb = 1
.
Lemma rel_prime_bezout : forall a b:Z, rel_prime a b -> Bezout a b 1.
Proof.
intros a b; exact (Zis_gcd_bezout a b 1).
Qed.
Lemma bezout_rel_prime : forall a b:Z, Bezout a b 1 -> rel_prime a b.
Proof.
simple induction 1; constructor; auto with zarith.
intros. rewrite <- H0; auto with zarith.
Qed.
Gauss's theorem: if
a
divides bc
and if a
and b
are
relatively prime, then a
divides c
.
Theorem Gauss : forall a b c:Z, (a | b * c) -> rel_prime a b -> (a | c).
Proof.
intros. elim (rel_prime_bezout a b H0); intros.
replace c with (c * 1); [ idtac | ring ].
rewrite <- H1.
replace (c * (u * a + v * b)) with (c * u * a + v * (b * c));
[ eauto with zarith | ring ].
Qed.
If
a
is relatively prime to b
and c
, then it is to bc
Lemma rel_prime_mult :
forall a b c:Z, rel_prime a b -> rel_prime a c -> rel_prime a (b * c).
Proof.
intros a b c Hb Hc.
elim (rel_prime_bezout a b Hb); intros.
elim (rel_prime_bezout a c Hc); intros.
apply bezout_rel_prime.
apply Bezout_intro with
(u := u * u0 * a + v0 * c * u + u0 * v * b) (v := v * v0).
rewrite <- H.
replace (u * a + v * b) with ((u * a + v * b) * 1); [ idtac | ring ].
rewrite <- H0.
ring.
Qed.
Lemma rel_prime_cross_prod :
forall a b c d:Z,
rel_prime a b ->
rel_prime c d -> b > 0 -> d > 0 -> a * d = b * c -> a = c /\ b = d.
Proof.
intros a b c d; intros.
elim (Zdivide_antisym b d).
split; auto with zarith.
rewrite H4 in H3.
rewrite Zmult_comm in H3.
apply Zmult_reg_l with d; auto with zarith.
intros; omega.
apply Gauss with a.
rewrite H3.
auto with zarith.
red in |- *; auto with zarith.
apply Gauss with c.
rewrite Zmult_comm.
rewrite <- H3.
auto with zarith.
red in |- *; auto with zarith.
Qed.
After factorization by a gcd, the original numbers are relatively prime.
Lemma Zis_gcd_rel_prime :
forall a b g:Z,
b > 0 -> g >= 0 -> Zis_gcd a b g -> rel_prime (a / g) (b / g).
intros a b g; intros.
assert (g <> 0).
intro.
elim H1; intros.
elim H4; intros.
rewrite H2 in H6; subst b; omega.
unfold rel_prime in |- *.
destruct H1.
destruct H1 as (a',H1).
destruct H3 as (b',H3).
replace (a/g) with a';
[|rewrite H1; rewrite Z_div_mult; auto with zarith].
replace (b/g) with b';
[|rewrite H3; rewrite Z_div_mult; auto with zarith].
constructor.
exists a'; auto with zarith.
exists b'; auto with zarith.
intros x (xa,H5) (xb,H6).
destruct (H4 (x*g)).
exists xa; rewrite Zmult_assoc; rewrite <- H5; auto.
exists xb; rewrite Zmult_assoc; rewrite <- H6; auto.
replace g with (1*g) in H7; auto with zarith.
do 2 rewrite Zmult_assoc in H7.
generalize (Zmult_reg_r _ _ _ H2 H7); clear H7; intros.
rewrite Zmult_1_r in H7.
exists q; auto with zarith.
Qed.
Inductive prime (p:Z) : Prop :=
prime_intro :
1 < p -> (forall n:Z, 1 <= n < p -> rel_prime n p) -> prime p.
The sole divisors of a prime number
p
are -1
, 1
, p
and -p
.
Lemma prime_divisors :
forall p:Z,
prime p -> forall a:Z, (a | p) -> a = -1 \/ a = 1 \/ a = p \/ a = - p.
Proof.
simple induction 1; intros.
assert
(a = - p \/ - p < a < -1 \/ a = -1 \/ a = 0 \/ a = 1 \/ 1 < a < p \/ a = p).
assert (Zabs a <= Zabs p). apply Zdivide_bounds; [ assumption | omega ].
generalize H3.
pattern (Zabs a) in |- *; apply Zabs_ind; pattern (Zabs p) in |- *;
apply Zabs_ind; intros; omega.
intuition idtac.
absurd (rel_prime (- a) p); intuition.
inversion H3.
assert (- a | - a); auto with zarith.
assert (- a | p); auto with zarith.
generalize (H8 (- a) H9 H10); intuition idtac.
generalize (Zdivide_1 (- a) H11); intuition.
inversion H2. subst a; omega.
absurd (rel_prime a p); intuition.
inversion H3.
assert (a | a); auto with zarith.
assert (a | p); auto with zarith.
generalize (H8 a H9 H10); intuition idtac.
generalize (Zdivide_1 a H11); intuition.
Qed.
A prime number is relatively prime with any number it does not divide
Lemma prime_rel_prime :
forall p:Z, prime p -> forall a:Z, ~ (p | a) -> rel_prime p a.
Proof.
simple induction 1; intros.
constructor; intuition.
elim (prime_divisors p H x H3); intuition; subst; auto with zarith.
absurd (p | a); auto with zarith.
absurd (p | a); intuition.
Qed.
Hint Resolve prime_rel_prime: zarith.
Zdivide
can be expressed using Zmod
.
Lemma Zmod_divide : forall a b:Z, b > 0 -> a mod b = 0 -> (b | a).
Proof.
intros a b H H0.
apply Zdivide_intro with (a / b).
pattern a at 1 in |- *; rewrite (Z_div_mod_eq a b H).
rewrite H0; ring.
Qed.
Lemma Zdivide_mod : forall a b:Z, b > 0 -> (b | a) -> a mod b = 0.
Proof.
intros a b; simple destruct 2; intros; subst.
change (q * b) with (0 + q * b) in |- *.
rewrite Z_mod_plus; auto.
Qed.
Zdivide
is hence decidable
Lemma Zdivide_dec : forall a b:Z, {(a | b)} + {~ (a | b)}.
Proof.
intros a b; elim (Ztrichotomy_inf a 0).
intros H; elim H; intros.
case (Z_eq_dec (b mod - a) 0).
left; apply Zdivide_opp_l_rev; apply Zmod_divide; auto with zarith.
intro H1; right; intro; elim H1; apply Zdivide_mod; auto with zarith.
case (Z_eq_dec b 0); intro.
left; subst; auto with zarith.
right; subst; intro H0; inversion H0; omega.
intro H; case (Z_eq_dec (b mod a) 0).
left; apply Zmod_divide; auto with zarith.
intro H1; right; intro; elim H1; apply Zdivide_mod; auto with zarith.
Qed.
If a prime
p
divides ab
then it divides either a
or b
Lemma prime_mult :
forall p:Z, prime p -> forall a b:Z, (p | a * b) -> (p | a) \/ (p | b).
Proof.
intro p; simple induction 1; intros.
case (Zdivide_dec p a); intuition.
right; apply Gauss with a; auto with zarith.
Qed.
We could obtain a
Algorithm:
gcd 0 b = b gcd a 0 = a gcd (2a) (2b) = 2(gcd a b) gcd (2a+1) (2b) = gcd (2a+1) b gcd (2a) (2b+1) = gcd a (2b+1) gcd (2a+1) (2b+1) = gcd (b-a) (2*a+1) or gcd (a-b) (2*b+1), depending on whether a<b
Zgcd
function via Euclid algorithm. But we propose
here a binary version of Zgcd
, faster and executable within Coq.
Algorithm:
gcd 0 b = b gcd a 0 = a gcd (2a) (2b) = 2(gcd a b) gcd (2a+1) (2b) = gcd (2a+1) b gcd (2a) (2b+1) = gcd a (2b+1) gcd (2a+1) (2b+1) = gcd (b-a) (2*a+1) or gcd (a-b) (2*b+1), depending on whether a<b
Open Scope positive_scope.
Fixpoint Pgcdn (n: nat) (a b : positive) { struct n } : positive :=
match n with
| O => 1
| S n =>
match a,b with
| xH, _ => 1
| _, xH => 1
| xO a, xO b => xO (Pgcdn n a b)
| a, xO b => Pgcdn n a b
| xO a, b => Pgcdn n a b
| xI a', xI b' => match Pcompare a' b' Eq with
| Eq => a
| Lt => Pgcdn n (b'-a') a
| Gt => Pgcdn n (a'-b') b
end
end
end.
Fixpoint Pggcdn (n: nat) (a b : positive) { struct n } : (positive*(positive*positive)) :=
match n with
| O => (1,(a,b))
| S n =>
match a,b with
| xH, b => (1,(1,b))
| a, xH => (1,(a,1))
| xO a, xO b =>
let (g,p) := Pggcdn n a b in
(xO g,p)
| a, xO b =>
let (g,p) := Pggcdn n a b in
let (aa,bb) := p in
(g,(aa, xO bb))
| xO a, b =>
let (g,p) := Pggcdn n a b in
let (aa,bb) := p in
(g,(xO aa, bb))
| xI a', xI b' => match Pcompare a' b' Eq with
| Eq => (a,(1,1))
| Lt =>
let (g,p) := Pggcdn n (b'-a') a in
let (ba,aa) := p in
(g,(aa, aa + xO ba))
| Gt =>
let (g,p) := Pggcdn n (a'-b') b in
let (ab,bb) := p in
(g,(bb+xO ab, bb))
end
end
end.
Definition Pgcd (a b: positive) := Pgcdn (Psize a + Psize b)%nat a b.
Definition Pggcd (a b: positive) := Pggcdn (Psize a + Psize b)%nat a b.
Open Scope Z_scope.
Definition Zgcd (a b : Z) : Z := match a,b with
| Z0, _ => Zabs b
| _, Z0 => Zabs a
| Zpos a, Zpos b => Zpos (Pgcd a b)
| Zpos a, Zneg b => Zpos (Pgcd a b)
| Zneg a, Zpos b => Zpos (Pgcd a b)
| Zneg a, Zneg b => Zpos (Pgcd a b)
end.
Definition Zggcd (a b : Z) : Z*(Z*Z) := match a,b with
| Z0, _ => (Zabs b,(0, Zsgn b))
| _, Z0 => (Zabs a,(Zsgn a, 0))
| Zpos a, Zpos b =>
let (g,p) := Pggcd a b in
let (aa,bb) := p in
(Zpos g, (Zpos aa, Zpos bb))
| Zpos a, Zneg b =>
let (g,p) := Pggcd a b in
let (aa,bb) := p in
(Zpos g, (Zpos aa, Zneg bb))
| Zneg a, Zpos b =>
let (g,p) := Pggcd a b in
let (aa,bb) := p in
(Zpos g, (Zneg aa, Zpos bb))
| Zneg a, Zneg b =>
let (g,p) := Pggcd a b in
let (aa,bb) := p in
(Zpos g, (Zneg aa, Zneg bb))
end.
Lemma Zgcd_is_pos : forall a b, 0 <= Zgcd a b.
Proof.
unfold Zgcd; destruct a; destruct b; auto with zarith.
Qed.
Lemma Psize_monotone : forall p q, Pcompare p q Eq = Lt -> (Psize p <= Psize q)%nat.
Proof.
induction p; destruct q; simpl; auto with arith; intros; try discriminate.
intros; generalize (Pcompare_Gt_Lt _ _ H); auto with arith.
intros; destruct (Pcompare_Lt_Lt _ _ H); auto with arith; subst; auto.
Qed.
Lemma Pminus_Zminus : forall a b, Pcompare a b Eq = Lt ->
Zpos (b-a) = Zpos b - Zpos a.
Proof.
intros.
repeat rewrite Zpos_eq_Z_of_nat_o_nat_of_P.
rewrite nat_of_P_minus_morphism.
apply inj_minus1.
apply lt_le_weak.
apply nat_of_P_lt_Lt_compare_morphism; auto.
rewrite ZC4; rewrite H; auto.
Qed.
Lemma Zis_gcd_even_odd : forall a b g, Zis_gcd (Zpos a) (Zpos (xI b)) g ->
Zis_gcd (Zpos (xO a)) (Zpos (xI b)) g.
Proof.
intros.
destruct H.
constructor; auto.
destruct H as (e,H2); exists (2*e); auto with zarith.
rewrite Zpos_xO; rewrite H2; ring.
intros.
apply H1; auto.
rewrite Zpos_xO in H2.
rewrite Zpos_xI in H3.
apply Gauss with 2; auto.
apply bezout_rel_prime.
destruct H3 as (bb, H3).
apply Bezout_intro with bb (-Zpos b).
omega.
Qed.
Lemma Pgcdn_correct : forall n a b, (Psize a + Psize b<=n)%nat ->
Zis_gcd (Zpos a) (Zpos b) (Zpos (Pgcdn n a b)).
Proof.
intro n; pattern n; apply lt_wf_ind; clear n; intros.
destruct n.
simpl.
destruct a; simpl in *; try inversion H0.
destruct a.
destruct b; simpl.
case_eq (Pcompare a b Eq); intros.
rewrite (Pcompare_Eq_eq _ _ H1); apply Zis_gcd_refl.
apply Zis_gcd_sym.
apply Zis_gcd_for_euclid with 1.
apply Zis_gcd_sym.
replace (Zpos (xI b) - 1 * Zpos (xI a)) with (Zpos(xO (b - a))).
apply Zis_gcd_even_odd.
apply H; auto.
simpl in *.
assert (Psize (b-a) <= Psize b)%nat.
apply Psize_monotone.
change (Zpos (b-a) < Zpos b).
rewrite (Pminus_Zminus _ _ H1).
assert (0 < Zpos a) by (compute; auto).
omega.
omega.
rewrite Zpos_xO; do 2 rewrite Zpos_xI.
rewrite Pminus_Zminus; auto.
omega.
apply Zis_gcd_for_euclid with 1.
replace (Zpos (xI a) - 1 * Zpos (xI b)) with (Zpos(xO (a - b))).
apply Zis_gcd_sym.
apply Zis_gcd_even_odd.
apply H; auto.
simpl in *.
assert (Psize (a-b) <= Psize a)%nat.
apply Psize_monotone.
change (Zpos (a-b) < Zpos a).
rewrite (Pminus_Zminus b a).
assert (0 < Zpos b) by (compute; auto).
omega.
rewrite ZC4; rewrite H1; auto.
omega.
rewrite Zpos_xO; do 2 rewrite Zpos_xI.
rewrite Pminus_Zminus; auto.
omega.
rewrite ZC4; rewrite H1; auto.
apply Zis_gcd_sym.
apply Zis_gcd_even_odd.
apply Zis_gcd_sym.
apply H; auto.
simpl in *; omega.
apply Zis_gcd_1.
destruct b; simpl.
apply Zis_gcd_even_odd.
apply H; auto.
simpl in *; omega.
rewrite (Zpos_xO a); rewrite (Zpos_xO b); rewrite (Zpos_xO (Pgcdn n a b)).
apply Zis_gcd_mult.
apply H; auto.
simpl in *; omega.
apply Zis_gcd_1.
simpl; apply Zis_gcd_sym; apply Zis_gcd_1.
Qed.
Lemma Pgcd_correct : forall a b, Zis_gcd (Zpos a) (Zpos b) (Zpos (Pgcd a b)).
Proof.
unfold Pgcd; intros.
apply Pgcdn_correct; auto.
Qed.
Lemma Zgcd_is_gcd : forall a b, Zis_gcd a b (Zgcd a b).
Proof.
destruct a.
intros.
simpl.
apply Zis_gcd_0_abs.
destruct b; simpl.
apply Zis_gcd_0.
apply Pgcd_correct.
apply Zis_gcd_sym.
apply Zis_gcd_minus; simpl.
apply Pgcd_correct.
destruct b; simpl.
apply Zis_gcd_minus; simpl.
apply Zis_gcd_sym.
apply Zis_gcd_0.
apply Zis_gcd_minus; simpl.
apply Zis_gcd_sym.
apply Pgcd_correct.
apply Zis_gcd_sym.
apply Zis_gcd_minus; simpl.
apply Zis_gcd_minus; simpl.
apply Zis_gcd_sym.
apply Pgcd_correct.
Qed.
Lemma Pggcdn_gcdn : forall n a b,
fst (Pggcdn n a b) = Pgcdn n a b.
Proof.
induction n.
simpl; auto.
destruct a; destruct b; simpl; auto.
destruct (Pcompare a b Eq); simpl; auto.
rewrite <- IHn; destruct (Pggcdn n (b-a) (xI a)) as (g,(aa,bb)); simpl; auto.
rewrite <- IHn; destruct (Pggcdn n (a-b) (xI b)) as (g,(aa,bb)); simpl; auto.
rewrite <- IHn; destruct (Pggcdn n (xI a) b) as (g,(aa,bb)); simpl; auto.
rewrite <- IHn; destruct (Pggcdn n a (xI b)) as (g,(aa,bb)); simpl; auto.
rewrite <- IHn; destruct (Pggcdn n a b) as (g,(aa,bb)); simpl; auto.
Qed.
Lemma Pggcd_gcd : forall a b, fst (Pggcd a b) = Pgcd a b.
Proof.
intros; exact (Pggcdn_gcdn (Psize a+Psize b)%nat a b).
Qed.
Lemma Zggcd_gcd : forall a b, fst (Zggcd a b) = Zgcd a b.
Proof.
destruct a; destruct b; simpl; auto; rewrite <- Pggcd_gcd;
destruct (Pggcd p p0) as (g,(aa,bb)); simpl; auto.
Qed.
Open Scope positive_scope.
Lemma Pggcdn_correct_divisors : forall n a b,
let (g,p) := Pggcdn n a b in
let (aa,bb):=p in
(a=g*aa) /\ (b=g*bb).
Proof.
induction n.
simpl; auto.
destruct a; destruct b; simpl; auto.
case_eq (Pcompare a b Eq); intros.
rewrite Pmult_comm; simpl; auto.
rewrite (Pcompare_Eq_eq _ _ H); auto.
generalize (IHn (b-a) (xI a)); destruct (Pggcdn n (b-a) (xI a)) as (g,(ba,aa)); simpl.
intros (H0,H1); split; auto.
rewrite Pmult_plus_distr_l.
rewrite Pmult_xO_permute_r.
rewrite <- H1; rewrite <- H0.
simpl; f_equal; symmetry.
apply Pplus_minus; auto.
rewrite ZC4; rewrite H; auto.
generalize (IHn (a-b) (xI b)); destruct (Pggcdn n (a-b) (xI b)) as (g,(ab,bb)); simpl.
intros (H0,H1); split; auto.
rewrite Pmult_plus_distr_l.
rewrite Pmult_xO_permute_r.
rewrite <- H1; rewrite <- H0.
simpl; f_equal; symmetry.
apply Pplus_minus; auto.
generalize (IHn (xI a) b); destruct (Pggcdn n (xI a) b) as (g,(ab,bb)); simpl.
intros (H0,H1); split; auto.
rewrite Pmult_xO_permute_r; rewrite H1; auto.
generalize (IHn a (xI b)); destruct (Pggcdn n a (xI b)) as (g,(ab,bb)); simpl.
intros (H0,H1); split; auto.
rewrite Pmult_xO_permute_r; rewrite H0; auto.
generalize (IHn a b); destruct (Pggcdn n a b) as (g,(ab,bb)); simpl.
intros (H0,H1); split; subst; auto.
Qed.
Lemma Pggcd_correct_divisors : forall a b,
let (g,p) := Pggcd a b in
let (aa,bb):=p in
(a=g*aa) /\ (b=g*bb).
Proof.
intros a b; exact (Pggcdn_correct_divisors (Psize a + Psize b)%nat a b).
Qed.
Open Scope Z_scope.
Lemma Zggcd_correct_divisors : forall a b,
let (g,p) := Zggcd a b in
let (aa,bb):=p in
(a=g*aa) /\ (b=g*bb).
Proof.
destruct a; destruct b; simpl; auto; try solve [rewrite Pmult_comm; simpl; auto];
generalize (Pggcd_correct_divisors p p0); destruct (Pggcd p p0) as (g,(aa,bb));
destruct 1; subst; auto.
Qed.
Theorem Zgcd_spec : forall x y : Z, {z : Z | Zis_gcd x y z /\ 0 <= z}.
Proof.
intros x y; exists (Zgcd x y).
split; [apply Zgcd_is_gcd | apply Zgcd_is_pos].
Qed.