Library Coq.Reals.PartSum
Require Import Rbase.
Require Import Rfunctions.
Require Import Rseries.
Require Import Rcomplete.
Require Import Max.
Open Local Scope R_scope.
Lemma tech1 :
forall (An:nat -> R) (N:nat),
(forall n:nat, (n <= N)%nat -> 0 < An n) -> 0 < sum_f_R0 An N.
Proof.
intros; induction N as [| N HrecN].
simpl in |- *; apply H; apply le_n.
simpl in |- *; apply Rplus_lt_0_compat.
apply HrecN; intros; apply H; apply le_S; assumption.
apply H; apply le_n.
Qed.
Lemma tech2 :
forall (An:nat -> R) (m n:nat),
(m < n)%nat ->
sum_f_R0 An n =
sum_f_R0 An m + sum_f_R0 (fun i:nat => An (S m + i)%nat) (n - S m).
Proof.
intros; induction n as [| n Hrecn].
elim (lt_n_O _ H).
cut ((m < n)%nat \/ m = n).
intro; elim H0; intro.
replace (sum_f_R0 An (S n)) with (sum_f_R0 An n + An (S n));
[ idtac | reflexivity ].
replace (S n - S m)%nat with (S (n - S m)).
replace (sum_f_R0 (fun i:nat => An (S m + i)%nat) (S (n - S m))) with
(sum_f_R0 (fun i:nat => An (S m + i)%nat) (n - S m) +
An (S m + S (n - S m))%nat); [ idtac | reflexivity ].
replace (S m + S (n - S m))%nat with (S n).
rewrite (Hrecn H1).
ring.
apply INR_eq; rewrite S_INR; rewrite plus_INR; do 2 rewrite S_INR;
rewrite minus_INR.
rewrite S_INR; ring.
apply lt_le_S; assumption.
apply INR_eq; rewrite S_INR; repeat rewrite minus_INR.
repeat rewrite S_INR; ring.
apply le_n_S; apply lt_le_weak; assumption.
apply lt_le_S; assumption.
rewrite H1; rewrite <- minus_n_n; simpl in |- *.
replace (n + 0)%nat with n; [ reflexivity | ring ].
inversion H.
right; reflexivity.
left; apply lt_le_trans with (S m); [ apply lt_n_Sn | assumption ].
Qed.
Lemma tech3 :
forall (k:R) (N:nat),
k <> 1 -> sum_f_R0 (fun i:nat => k ^ i) N = (1 - k ^ S N) / (1 - k).
Proof.
intros; cut (1 - k <> 0).
intro; induction N as [| N HrecN].
simpl in |- *; rewrite Rmult_1_r; unfold Rdiv in |- *; rewrite <- Rinv_r_sym.
reflexivity.
apply H0.
replace (sum_f_R0 (fun i:nat => k ^ i) (S N)) with
(sum_f_R0 (fun i:nat => k ^ i) N + k ^ S N); [ idtac | reflexivity ];
rewrite HrecN;
replace ((1 - k ^ S N) / (1 - k) + k ^ S N) with
((1 - k ^ S N + (1 - k) * k ^ S N) / (1 - k)).
apply Rmult_eq_reg_l with (1 - k).
unfold Rdiv in |- *; do 2 rewrite <- (Rmult_comm (/ (1 - k)));
repeat rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym;
[ do 2 rewrite Rmult_1_l; simpl in |- *; ring | apply H0 ].
apply H0.
unfold Rdiv in |- *; rewrite Rmult_plus_distr_r; rewrite (Rmult_comm (1 - k));
repeat rewrite Rmult_assoc; rewrite <- Rinv_r_sym.
rewrite Rmult_1_r; reflexivity.
apply H0.
apply Rminus_eq_contra; red in |- *; intro; elim H; symmetry in |- *;
assumption.
Qed.
Lemma tech4 :
forall (An:nat -> R) (k:R) (N:nat),
0 <= k -> (forall i:nat, An (S i) < k * An i) -> An N <= An 0%nat * k ^ N.
Proof.
intros; induction N as [| N HrecN].
simpl in |- *; right; ring.
apply Rle_trans with (k * An N).
left; apply (H0 N).
replace (S N) with (N + 1)%nat; [ idtac | ring ].
rewrite pow_add; simpl in |- *; rewrite Rmult_1_r;
replace (An 0%nat * (k ^ N * k)) with (k * (An 0%nat * k ^ N));
[ idtac | ring ]; apply Rmult_le_compat_l.
assumption.
apply HrecN.
Qed.
Lemma tech5 :
forall (An:nat -> R) (N:nat), sum_f_R0 An (S N) = sum_f_R0 An N + An (S N).
Proof.
intros; reflexivity.
Qed.
Lemma tech6 :
forall (An:nat -> R) (k:R) (N:nat),
0 <= k ->
(forall i:nat, An (S i) < k * An i) ->
sum_f_R0 An N <= An 0%nat * sum_f_R0 (fun i:nat => k ^ i) N.
Proof.
intros; induction N as [| N HrecN].
simpl in |- *; right; ring.
apply Rle_trans with (An 0%nat * sum_f_R0 (fun i:nat => k ^ i) N + An (S N)).
rewrite tech5; do 2 rewrite <- (Rplus_comm (An (S N)));
apply Rplus_le_compat_l.
apply HrecN.
rewrite tech5; rewrite Rmult_plus_distr_l; apply Rplus_le_compat_l.
apply tech4; assumption.
Qed.
Lemma tech7 : forall r1 r2:R, r1 <> 0 -> r2 <> 0 -> r1 <> r2 -> / r1 <> / r2.
Proof.
intros; red in |- *; intro.
assert (H3 := Rmult_eq_compat_l r1 _ _ H2).
rewrite <- Rinv_r_sym in H3; [ idtac | assumption ].
assert (H4 := Rmult_eq_compat_l r2 _ _ H3).
rewrite Rmult_1_r in H4; rewrite <- Rmult_assoc in H4.
rewrite Rinv_r_simpl_m in H4; [ idtac | assumption ].
elim H1; symmetry in |- *; assumption.
Qed.
Lemma tech11 :
forall (An Bn Cn:nat -> R) (N:nat),
(forall i:nat, An i = Bn i - Cn i) ->
sum_f_R0 An N = sum_f_R0 Bn N - sum_f_R0 Cn N.
Proof.
intros; induction N as [| N HrecN].
simpl in |- *; apply H.
do 3 rewrite tech5; rewrite HrecN; rewrite (H (S N)); ring.
Qed.
Lemma tech12 :
forall (An:nat -> R) (x l:R),
Un_cv (fun N:nat => sum_f_R0 (fun i:nat => An i * x ^ i) N) l ->
Pser An x l.
Proof.
intros; unfold Pser in |- *; unfold infinit_sum in |- *; unfold Un_cv in H;
assumption.
Qed.
Lemma scal_sum :
forall (An:nat -> R) (N:nat) (x:R),
x * sum_f_R0 An N = sum_f_R0 (fun i:nat => An i * x) N.
Proof.
intros; induction N as [| N HrecN].
simpl in |- *; ring.
do 2 rewrite tech5.
rewrite Rmult_plus_distr_l; rewrite <- HrecN; ring.
Qed.
Lemma decomp_sum :
forall (An:nat -> R) (N:nat),
(0 < N)%nat ->
sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i:nat => An (S i)) (pred N).
Proof.
intros; induction N as [| N HrecN].
elim (lt_irrefl _ H).
cut ((0 < N)%nat \/ N = 0%nat).
intro; elim H0; intro.
cut (S (pred N) = pred (S N)).
intro; rewrite <- H2.
do 2 rewrite tech5.
replace (S (S (pred N))) with (S N).
rewrite (HrecN H1); ring.
rewrite H2; simpl in |- *; reflexivity.
assert (H2 := O_or_S N).
elim H2; intros.
elim a; intros.
rewrite <- p.
simpl in |- *; reflexivity.
rewrite <- b in H1; elim (lt_irrefl _ H1).
rewrite H1; simpl in |- *; reflexivity.
inversion H.
right; reflexivity.
left; apply lt_le_trans with 1%nat; [ apply lt_O_Sn | assumption ].
Qed.
Lemma plus_sum :
forall (An Bn:nat -> R) (N:nat),
sum_f_R0 (fun i:nat => An i + Bn i) N = sum_f_R0 An N + sum_f_R0 Bn N.
Proof.
intros; induction N as [| N HrecN].
simpl in |- *; ring.
do 3 rewrite tech5; rewrite HrecN; ring.
Qed.
Lemma sum_eq :
forall (An Bn:nat -> R) (N:nat),
(forall i:nat, (i <= N)%nat -> An i = Bn i) ->
sum_f_R0 An N = sum_f_R0 Bn N.
Proof.
intros; induction N as [| N HrecN].
simpl in |- *; apply H; apply le_n.
do 2 rewrite tech5; rewrite HrecN.
rewrite (H (S N)); [ reflexivity | apply le_n ].
intros; apply H; apply le_trans with N; [ assumption | apply le_n_Sn ].
Qed.
Lemma uniqueness_sum :
forall (An:nat -> R) (l1 l2:R),
infinit_sum An l1 -> infinit_sum An l2 -> l1 = l2.
Proof.
unfold infinit_sum in |- *; intros.
case (Req_dec l1 l2); intro.
assumption.
cut (0 < Rabs ((l1 - l2) / 2)); [ intro | apply Rabs_pos_lt ].
elim (H (Rabs ((l1 - l2) / 2)) H2); intros.
elim (H0 (Rabs ((l1 - l2) / 2)) H2); intros.
set (N := max x0 x); cut (N >= x0)%nat.
cut (N >= x)%nat.
intros; assert (H7 := H3 N H5); assert (H8 := H4 N H6).
cut (Rabs (l1 - l2) <= R_dist (sum_f_R0 An N) l1 + R_dist (sum_f_R0 An N) l2).
intro; assert (H10 := Rplus_lt_compat _ _ _ _ H7 H8);
assert (H11 := Rle_lt_trans _ _ _ H9 H10); unfold Rdiv in H11;
rewrite Rabs_mult in H11.
cut (Rabs (/ 2) = / 2).
intro; rewrite H12 in H11; assert (H13 := double_var); unfold Rdiv in H13;
rewrite <- H13 in H11.
elim (Rlt_irrefl _ H11).
apply Rabs_right; left; change (0 < / 2) in |- *; apply Rinv_0_lt_compat;
cut (0%nat <> 2%nat);
[ intro H20; generalize (lt_INR_0 2 (neq_O_lt 2 H20)); unfold INR in |- *;
intro; assumption
| discriminate ].
unfold R_dist in |- *; rewrite <- (Rabs_Ropp (sum_f_R0 An N - l1));
rewrite Ropp_minus_distr'.
replace (l1 - l2) with (l1 - sum_f_R0 An N + (sum_f_R0 An N - l2));
[ idtac | ring ].
apply Rabs_triang.
unfold ge in |- *; unfold N in |- *; apply le_max_r.
unfold ge in |- *; unfold N in |- *; apply le_max_l.
unfold Rdiv in |- *; apply prod_neq_R0.
apply Rminus_eq_contra; assumption.
apply Rinv_neq_0_compat; discrR.
Qed.
Lemma minus_sum :
forall (An Bn:nat -> R) (N:nat),
sum_f_R0 (fun i:nat => An i - Bn i) N = sum_f_R0 An N - sum_f_R0 Bn N.
Proof.
intros; induction N as [| N HrecN].
simpl in |- *; ring.
do 3 rewrite tech5; rewrite HrecN; ring.
Qed.
Lemma sum_decomposition :
forall (An:nat -> R) (N:nat),
sum_f_R0 (fun l:nat => An (2 * l)%nat) (S N) +
sum_f_R0 (fun l:nat => An (S (2 * l))) N = sum_f_R0 An (2 * S N).
Proof.
intros.
induction N as [| N HrecN].
simpl in |- *; ring.
rewrite tech5.
rewrite (tech5 (fun l:nat => An (S (2 * l))) N).
replace (2 * S (S N))%nat with (S (S (2 * S N))).
rewrite (tech5 An (S (2 * S N))).
rewrite (tech5 An (2 * S N)).
rewrite <- HrecN.
ring.
ring.
Qed.
Lemma sum_Rle :
forall (An Bn:nat -> R) (N:nat),
(forall n:nat, (n <= N)%nat -> An n <= Bn n) ->
sum_f_R0 An N <= sum_f_R0 Bn N.
Proof.
intros.
induction N as [| N HrecN].
simpl in |- *; apply H.
apply le_n.
do 2 rewrite tech5.
apply Rle_trans with (sum_f_R0 An N + Bn (S N)).
apply Rplus_le_compat_l.
apply H.
apply le_n.
do 2 rewrite <- (Rplus_comm (Bn (S N))).
apply Rplus_le_compat_l.
apply HrecN.
intros; apply H.
apply le_trans with N; [ assumption | apply le_n_Sn ].
Qed.
Lemma Rsum_abs :
forall (An:nat -> R) (N:nat),
Rabs (sum_f_R0 An N) <= sum_f_R0 (fun l:nat => Rabs (An l)) N.
Proof.
intros.
induction N as [| N HrecN].
simpl in |- *.
right; reflexivity.
do 2 rewrite tech5.
apply Rle_trans with (Rabs (sum_f_R0 An N) + Rabs (An (S N))).
apply Rabs_triang.
do 2 rewrite <- (Rplus_comm (Rabs (An (S N)))).
apply Rplus_le_compat_l.
apply HrecN.
Qed.
Lemma sum_cte :
forall (x:R) (N:nat), sum_f_R0 (fun _:nat => x) N = x * INR (S N).
Proof.
intros.
induction N as [| N HrecN].
simpl in |- *; ring.
rewrite tech5.
rewrite HrecN; repeat rewrite S_INR; ring.
Qed.
Lemma sum_growing :
forall (An Bn:nat -> R) (N:nat),
(forall n:nat, An n <= Bn n) -> sum_f_R0 An N <= sum_f_R0 Bn N.
Proof.
intros.
induction N as [| N HrecN].
simpl in |- *; apply H.
do 2 rewrite tech5.
apply Rle_trans with (sum_f_R0 An N + Bn (S N)).
apply Rplus_le_compat_l; apply H.
do 2 rewrite <- (Rplus_comm (Bn (S N))).
apply Rplus_le_compat_l; apply HrecN.
Qed.
Lemma Rabs_triang_gen :
forall (An:nat -> R) (N:nat),
Rabs (sum_f_R0 An N) <= sum_f_R0 (fun i:nat => Rabs (An i)) N.
Proof.
intros.
induction N as [| N HrecN].
simpl in |- *.
right; reflexivity.
do 2 rewrite tech5.
apply Rle_trans with (Rabs (sum_f_R0 An N) + Rabs (An (S N))).
apply Rabs_triang.
do 2 rewrite <- (Rplus_comm (Rabs (An (S N)))).
apply Rplus_le_compat_l; apply HrecN.
Qed.
Lemma cond_pos_sum :
forall (An:nat -> R) (N:nat),
(forall n:nat, 0 <= An n) -> 0 <= sum_f_R0 An N.
Proof.
intros.
induction N as [| N HrecN].
simpl in |- *; apply H.
rewrite tech5.
apply Rplus_le_le_0_compat.
apply HrecN.
apply H.
Qed.
Definition Cauchy_crit_series (An:nat -> R) : Prop :=
Cauchy_crit (fun N:nat => sum_f_R0 An N).
Lemma cauchy_abs :
forall An:nat -> R,
Cauchy_crit_series (fun i:nat => Rabs (An i)) -> Cauchy_crit_series An.
Proof.
unfold Cauchy_crit_series in |- *; unfold Cauchy_crit in |- *.
intros.
elim (H eps H0); intros.
exists x.
intros.
cut
(R_dist (sum_f_R0 An n) (sum_f_R0 An m) <=
R_dist (sum_f_R0 (fun i:nat => Rabs (An i)) n)
(sum_f_R0 (fun i:nat => Rabs (An i)) m)).
intro.
apply Rle_lt_trans with
(R_dist (sum_f_R0 (fun i:nat => Rabs (An i)) n)
(sum_f_R0 (fun i:nat => Rabs (An i)) m)).
assumption.
apply H1; assumption.
assert (H4 := lt_eq_lt_dec n m).
elim H4; intro.
elim a; intro.
rewrite (tech2 An n m); [ idtac | assumption ].
rewrite (tech2 (fun i:nat => Rabs (An i)) n m); [ idtac | assumption ].
unfold R_dist in |- *.
unfold Rminus in |- *.
do 2 rewrite Ropp_plus_distr.
do 2 rewrite <- Rplus_assoc.
do 2 rewrite Rplus_opp_r.
do 2 rewrite Rplus_0_l.
do 2 rewrite Rabs_Ropp.
rewrite
(Rabs_right (sum_f_R0 (fun i:nat => Rabs (An (S n + i)%nat)) (m - S n)))
.
set (Bn := fun i:nat => An (S n + i)%nat).
replace (fun i:nat => Rabs (An (S n + i)%nat)) with
(fun i:nat => Rabs (Bn i)).
apply Rabs_triang_gen.
unfold Bn in |- *; reflexivity.
apply Rle_ge.
apply cond_pos_sum.
intro; apply Rabs_pos.
rewrite b.
unfold R_dist in |- *.
unfold Rminus in |- *; do 2 rewrite Rplus_opp_r.
rewrite Rabs_R0; right; reflexivity.
rewrite (tech2 An m n); [ idtac | assumption ].
rewrite (tech2 (fun i:nat => Rabs (An i)) m n); [ idtac | assumption ].
unfold R_dist in |- *.
unfold Rminus in |- *.
do 2 rewrite Rplus_assoc.
rewrite (Rplus_comm (sum_f_R0 An m)).
rewrite (Rplus_comm (sum_f_R0 (fun i:nat => Rabs (An i)) m)).
do 2 rewrite Rplus_assoc.
do 2 rewrite Rplus_opp_l.
do 2 rewrite Rplus_0_r.
rewrite
(Rabs_right (sum_f_R0 (fun i:nat => Rabs (An (S m + i)%nat)) (n - S m)))
.
set (Bn := fun i:nat => An (S m + i)%nat).
replace (fun i:nat => Rabs (An (S m + i)%nat)) with
(fun i:nat => Rabs (Bn i)).
apply Rabs_triang_gen.
unfold Bn in |- *; reflexivity.
apply Rle_ge.
apply cond_pos_sum.
intro; apply Rabs_pos.
Qed.
Lemma cv_cauchy_1 :
forall An:nat -> R,
sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 An N) l) ->
Cauchy_crit_series An.
Proof.
intros An X.
elim X; intros.
unfold Un_cv in p.
unfold Cauchy_crit_series in |- *; unfold Cauchy_crit in |- *.
intros.
cut (0 < eps / 2).
intro.
elim (p (eps / 2) H0); intros.
exists x0.
intros.
apply Rle_lt_trans with (R_dist (sum_f_R0 An n) x + R_dist (sum_f_R0 An m) x).
unfold R_dist in |- *.
replace (sum_f_R0 An n - sum_f_R0 An m) with
(sum_f_R0 An n - x + - (sum_f_R0 An m - x)); [ idtac | ring ].
rewrite <- (Rabs_Ropp (sum_f_R0 An m - x)).
apply Rabs_triang.
apply Rlt_le_trans with (eps / 2 + eps / 2).
apply Rplus_lt_compat.
apply H1; assumption.
apply H1; assumption.
right; symmetry in |- *; apply double_var.
unfold Rdiv in |- *; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
Qed.
Lemma cv_cauchy_2 :
forall An:nat -> R,
Cauchy_crit_series An ->
sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 An N) l).
Proof.
intros.
apply R_complete.
unfold Cauchy_crit_series in H.
exact H.
Qed.
Lemma sum_eq_R0 :
forall (An:nat -> R) (N:nat),
(forall n:nat, (n <= N)%nat -> An n = 0) -> sum_f_R0 An N = 0.
Proof.
intros; induction N as [| N HrecN].
simpl in |- *; apply H; apply le_n.
rewrite tech5; rewrite HrecN;
[ rewrite Rplus_0_l; apply H; apply le_n
| intros; apply H; apply le_trans with N; [ assumption | apply le_n_Sn ] ].
Qed.
Definition SP (fn:nat -> R -> R) (N:nat) (x:R) : R :=
sum_f_R0 (fun k:nat => fn k x) N.
Lemma sum_incr :
forall (An:nat -> R) (N:nat) (l:R),
Un_cv (fun n:nat => sum_f_R0 An n) l ->
(forall n:nat, 0 <= An n) -> sum_f_R0 An N <= l.
Proof.
intros; case (total_order_T (sum_f_R0 An N) l); intro.
elim s; intro.
left; apply a.
right; apply b.
cut (Un_growing (fun n:nat => sum_f_R0 An n)).
intro; set (l1 := sum_f_R0 An N) in r.
unfold Un_cv in H; cut (0 < l1 - l).
intro; elim (H _ H2); intros.
set (N0 := max x N); cut (N0 >= x)%nat.
intro; assert (H5 := H3 N0 H4).
cut (l1 <= sum_f_R0 An N0).
intro; unfold R_dist in H5; rewrite Rabs_right in H5.
cut (sum_f_R0 An N0 < l1).
intro; elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H7 H6)).
apply Rplus_lt_reg_r with (- l).
do 2 rewrite (Rplus_comm (- l)).
apply H5.
apply Rle_ge; apply Rplus_le_reg_l with l.
rewrite Rplus_0_r; replace (l + (sum_f_R0 An N0 - l)) with (sum_f_R0 An N0);
[ idtac | ring ]; apply Rle_trans with l1.
left; apply r.
apply H6.
unfold l1 in |- *; apply Rge_le;
apply (growing_prop (fun k:nat => sum_f_R0 An k)).
apply H1.
unfold ge, N0 in |- *; apply le_max_r.
unfold ge, N0 in |- *; apply le_max_l.
apply Rplus_lt_reg_r with l; rewrite Rplus_0_r;
replace (l + (l1 - l)) with l1; [ apply r | ring ].
unfold Un_growing in |- *; intro; simpl in |- *;
pattern (sum_f_R0 An n) at 1 in |- *; rewrite <- Rplus_0_r;
apply Rplus_le_compat_l; apply H0.
Qed.
Lemma sum_cv_maj :
forall (An:nat -> R) (fn:nat -> R -> R) (x l1 l2:R),
Un_cv (fun n:nat => SP fn n x) l1 ->
Un_cv (fun n:nat => sum_f_R0 An n) l2 ->
(forall n:nat, Rabs (fn n x) <= An n) -> Rabs l1 <= l2.
Proof.
intros; case (total_order_T (Rabs l1) l2); intro.
elim s; intro.
left; apply a.
right; apply b.
cut (forall n0:nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0).
intro; cut (0 < (Rabs l1 - l2) / 2).
intro; unfold Un_cv in H, H0.
elim (H _ H3); intros Na H4.
elim (H0 _ H3); intros Nb H5.
set (N := max Na Nb).
unfold R_dist in H4, H5.
cut (Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2).
intro; cut (Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2).
intro; cut (sum_f_R0 An N < (Rabs l1 + l2) / 2).
intro; cut ((Rabs l1 + l2) / 2 < Rabs (SP fn N x)).
intro; cut (sum_f_R0 An N < Rabs (SP fn N x)).
intro; assert (H11 := H2 N).
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H11 H10)).
apply Rlt_trans with ((Rabs l1 + l2) / 2); assumption.
case (Rcase_abs (Rabs l1 - Rabs (SP fn N x))); intro.
apply Rlt_trans with (Rabs l1).
apply Rmult_lt_reg_l with 2.
prove_sup0.
unfold Rdiv in |- *; rewrite (Rmult_comm 2); rewrite Rmult_assoc;
rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; rewrite double; apply Rplus_lt_compat_l; apply r.
discrR.
apply (Rminus_lt _ _ r0).
rewrite (Rabs_right _ r0) in H7.
apply Rplus_lt_reg_r with ((Rabs l1 - l2) / 2 - Rabs (SP fn N x)).
replace ((Rabs l1 - l2) / 2 - Rabs (SP fn N x) + (Rabs l1 + l2) / 2) with
(Rabs l1 - Rabs (SP fn N x)).
unfold Rminus in |- *; rewrite Rplus_assoc; rewrite Rplus_opp_l;
rewrite Rplus_0_r; apply H7.
unfold Rdiv in |- *; rewrite Rmult_plus_distr_r;
rewrite <- (Rmult_comm (/ 2)); rewrite Rmult_minus_distr_l;
repeat rewrite (Rmult_comm (/ 2)); pattern (Rabs l1) at 1 in |- *;
rewrite double_var; unfold Rdiv in |- *; ring.
case (Rcase_abs (sum_f_R0 An N - l2)); intro.
apply Rlt_trans with l2.
apply (Rminus_lt _ _ r0).
apply Rmult_lt_reg_l with 2.
prove_sup0.
rewrite (double l2); unfold Rdiv in |- *; rewrite (Rmult_comm 2);
rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; rewrite (Rplus_comm (Rabs l1)); apply Rplus_lt_compat_l;
apply r.
discrR.
rewrite (Rabs_right _ r0) in H6; apply Rplus_lt_reg_r with (- l2).
replace (- l2 + (Rabs l1 + l2) / 2) with ((Rabs l1 - l2) / 2).
rewrite Rplus_comm; apply H6.
unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2));
rewrite Rmult_minus_distr_l; rewrite Rmult_plus_distr_r;
pattern l2 at 2 in |- *; rewrite double_var;
repeat rewrite (Rmult_comm (/ 2)); rewrite Ropp_plus_distr;
unfold Rdiv in |- *; ring.
apply Rle_lt_trans with (Rabs (SP fn N x - l1)).
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr'; apply Rabs_triang_inv2.
apply H4; unfold ge, N in |- *; apply le_max_l.
apply H5; unfold ge, N in |- *; apply le_max_r.
unfold Rdiv in |- *; apply Rmult_lt_0_compat.
apply Rplus_lt_reg_r with l2.
rewrite Rplus_0_r; replace (l2 + (Rabs l1 - l2)) with (Rabs l1);
[ apply r | ring ].
apply Rinv_0_lt_compat; prove_sup0.
intros; induction n0 as [| n0 Hrecn0].
unfold SP in |- *; simpl in |- *; apply H1.
unfold SP in |- *; simpl in |- *.
apply Rle_trans with
(Rabs (sum_f_R0 (fun k:nat => fn k x) n0) + Rabs (fn (S n0) x)).
apply Rabs_triang.
apply Rle_trans with (sum_f_R0 An n0 + Rabs (fn (S n0) x)).
do 2 rewrite <- (Rplus_comm (Rabs (fn (S n0) x))).
apply Rplus_le_compat_l; apply Hrecn0.
apply Rplus_le_compat_l; apply H1.
Qed.