Library Coq.Arith.Euclid
Require Import Mult.
Require Import Compare_dec.
Require Import Wf_nat.
Open Local Scope nat_scope.
Implicit Types a b n q r : nat.
Inductive diveucl a b : Set :=
divex : forall q r, b > r -> a = q * b + r -> diveucl a b.
Lemma eucl_dev : forall n, n > 0 -> forall m:nat, diveucl m n.
Proof.
intros b H a; pattern a in |- *; apply gt_wf_rec; intros n H0.
elim (le_gt_dec b n).
intro lebn.
elim (H0 (n - b)); auto with arith.
intros q r g e.
apply divex with (S q) r; simpl in |- *; auto with arith.
elim plus_assoc.
elim e; auto with arith.
intros gtbn.
apply divex with 0 n; simpl in |- *; auto with arith.
Qed.
Lemma quotient :
forall n,
n > 0 ->
forall m:nat, {q : nat | exists r : nat, m = q * n + r /\ n > r}.
Proof.
intros b H a; pattern a in |- *; apply gt_wf_rec; intros n H0.
elim (le_gt_dec b n).
intro lebn.
elim (H0 (n - b)); auto with arith.
intros q Hq; exists (S q).
elim Hq; intros r Hr.
exists r; simpl in |- *; elim Hr; intros.
elim plus_assoc.
elim H1; auto with arith.
intros gtbn.
exists 0; exists n; simpl in |- *; auto with arith.
Qed.
Lemma modulo :
forall n,
n > 0 ->
forall m:nat, {r : nat | exists q : nat, m = q * n + r /\ n > r}.
Proof.
intros b H a; pattern a in |- *; apply gt_wf_rec; intros n H0.
elim (le_gt_dec b n).
intro lebn.
elim (H0 (n - b)); auto with arith.
intros r Hr; exists r.
elim Hr; intros q Hq.
elim Hq; intros; exists (S q); simpl in |- *.
elim plus_assoc.
elim H1; auto with arith.
intros gtbn.
exists n; exists 0; simpl in |- *; auto with arith.
Qed.