Library Coq.ZArith.Zorder
Binary Integers (Pierre Crégut (CNET, Lannion, France)
Require Import BinPos.
Require Import BinInt.
Require Import Arith_base.
Require Import Decidable.
Require Import Zcompare.
Open Local Scope Z_scope.
Implicit Types x y z : Z.
Properties of the order relations on binary integers
Theorem Ztrichotomy_inf : forall n m:Z, {n < m} + {n = m} + {n > m}.
Proof.
unfold Zgt, Zlt in |- *; intros m n; assert (H := refl_equal (m ?= n)).
set (x := m ?= n) in H at 2 |- *.
destruct x;
[ left; right; rewrite Zcompare_Eq_eq with (1 := H) | left; left | right ];
reflexivity.
Qed.
Theorem Ztrichotomy : forall n m:Z, n < m \/ n = m \/ n > m.
Proof.
intros m n; destruct (Ztrichotomy_inf m n) as [[Hlt| Heq]| Hgt];
[ left | right; left | right; right ]; assumption.
Qed.
Theorem dec_eq : forall n m:Z, decidable (n = m).
Proof.
intros x y; unfold decidable in |- *; elim (Zcompare_Eq_iff_eq x y);
intros H1 H2; elim (Dcompare (x ?= y));
[ tauto
| intros H3; right; unfold not in |- *; intros H4; elim H3; rewrite (H2 H4);
intros H5; discriminate H5 ].
Qed.
Theorem dec_Zne : forall n m:Z, decidable (Zne n m).
Proof.
intros x y; unfold decidable, Zne in |- *; elim (Zcompare_Eq_iff_eq x y).
intros H1 H2; elim (Dcompare (x ?= y));
[ right; rewrite H1; auto
| left; unfold not in |- *; intro; absurd ((x ?= y) = Eq);
[ elim H; intros HR; rewrite HR; discriminate | auto ] ].
Qed.
Theorem dec_Zle : forall n m:Z, decidable (n <= m).
Proof.
intros x y; unfold decidable, Zle in |- *; elim (x ?= y);
[ left; discriminate
| left; discriminate
| right; unfold not in |- *; intros H; apply H; trivial with arith ].
Qed.
Theorem dec_Zgt : forall n m:Z, decidable (n > m).
Proof.
intros x y; unfold decidable, Zgt in |- *; elim (x ?= y);
[ right; discriminate | right; discriminate | auto with arith ].
Qed.
Theorem dec_Zge : forall n m:Z, decidable (n >= m).
Proof.
intros x y; unfold decidable, Zge in |- *; elim (x ?= y);
[ left; discriminate
| right; unfold not in |- *; intros H; apply H; trivial with arith
| left; discriminate ].
Qed.
Theorem dec_Zlt : forall n m:Z, decidable (n < m).
Proof.
intros x y; unfold decidable, Zlt in |- *; elim (x ?= y);
[ right; discriminate | auto with arith | right; discriminate ].
Qed.
Theorem not_Zeq : forall n m:Z, n <> m -> n < m \/ m < n.
Proof.
intros x y; elim (Dcompare (x ?= y));
[ intros H1 H2; absurd (x = y);
[ assumption | elim (Zcompare_Eq_iff_eq x y); auto with arith ]
| unfold Zlt in |- *; intros H; elim H; intros H1;
[ auto with arith
| right; elim (Zcompare_Gt_Lt_antisym x y); auto with arith ] ].
Qed.
Lemma Zgt_lt : forall n m:Z, n > m -> m < n.
Proof.
unfold Zgt, Zlt in |- *; intros m n H; elim (Zcompare_Gt_Lt_antisym m n);
auto with arith.
Qed.
Lemma Zlt_gt : forall n m:Z, n < m -> m > n.
Proof.
unfold Zgt, Zlt in |- *; intros m n H; elim (Zcompare_Gt_Lt_antisym n m);
auto with arith.
Qed.
Lemma Zge_le : forall n m:Z, n >= m -> m <= n.
Proof.
intros m n; change (~ m < n -> ~ n > m) in |- *; unfold not in |- *;
intros H1 H2; apply H1; apply Zgt_lt; assumption.
Qed.
Lemma Zle_ge : forall n m:Z, n <= m -> m >= n.
Proof.
intros m n; change (~ m > n -> ~ n < m) in |- *; unfold not in |- *;
intros H1 H2; apply H1; apply Zlt_gt; assumption.
Qed.
Lemma Zle_not_gt : forall n m:Z, n <= m -> ~ n > m.
Proof.
trivial.
Qed.
Lemma Zgt_not_le : forall n m:Z, n > m -> ~ n <= m.
Proof.
intros n m H1 H2; apply H2; assumption.
Qed.
Lemma Zle_not_lt : forall n m:Z, n <= m -> ~ m < n.
Proof.
intros n m H1 H2.
assert (H3 := Zlt_gt _ _ H2).
apply Zle_not_gt with n m; assumption.
Qed.
Lemma Zlt_not_le : forall n m:Z, n < m -> ~ m <= n.
Proof.
intros n m H1 H2.
apply Zle_not_lt with m n; assumption.
Qed.
Lemma Znot_ge_lt : forall n m:Z, ~ n >= m -> n < m.
Proof.
unfold Zge, Zlt in |- *; intros x y H; apply dec_not_not;
[ exact (dec_Zlt x y) | assumption ].
Qed.
Lemma Znot_lt_ge : forall n m:Z, ~ n < m -> n >= m.
Proof.
unfold Zlt, Zge in |- *; auto with arith.
Qed.
Lemma Znot_gt_le : forall n m:Z, ~ n > m -> n <= m.
Proof.
trivial.
Qed.
Lemma Znot_le_gt : forall n m:Z, ~ n <= m -> n > m.
Proof.
unfold Zle, Zgt in |- *; intros x y H; apply dec_not_not;
[ exact (dec_Zgt x y) | assumption ].
Qed.
Lemma Zge_iff_le : forall n m:Z, n >= m <-> m <= n.
Proof.
intros x y; intros. split. intro. apply Zge_le. assumption.
intro. apply Zle_ge. assumption.
Qed.
Lemma Zgt_iff_lt : forall n m:Z, n > m <-> m < n.
Proof.
intros x y. split. intro. apply Zgt_lt. assumption.
intro. apply Zlt_gt. assumption.
Qed.
Reflexivity
Lemma Zle_refl : forall n:Z, n <= n.
Proof.
intros n; unfold Zle in |- *; rewrite (Zcompare_refl n); discriminate.
Qed.
Lemma Zeq_le : forall n m:Z, n = m -> n <= m.
Proof.
intros; rewrite H; apply Zle_refl.
Qed.
Hint Resolve Zle_refl: zarith.
Antisymmetry
Lemma Zle_antisym : forall n m:Z, n <= m -> m <= n -> n = m.
Proof.
intros n m H1 H2; destruct (Ztrichotomy n m) as [Hlt| [Heq| Hgt]].
absurd (m > n); [ apply Zle_not_gt | apply Zlt_gt ]; assumption.
assumption.
absurd (n > m); [ apply Zle_not_gt | idtac ]; assumption.
Qed.
Asymmetry
Lemma Zgt_asym : forall n m:Z, n > m -> ~ m > n.
Proof.
unfold Zgt in |- *; intros n m H; elim (Zcompare_Gt_Lt_antisym n m);
intros H1 H2; rewrite H1; [ discriminate | assumption ].
Qed.
Lemma Zlt_asym : forall n m:Z, n < m -> ~ m < n.
Proof.
intros n m H H1; assert (H2 : m > n). apply Zlt_gt; assumption.
assert (H3 : n > m). apply Zlt_gt; assumption.
apply Zgt_asym with m n; assumption.
Qed.
Irreflexivity
Lemma Zgt_irrefl : forall n:Z, ~ n > n.
Proof.
intros n H; apply (Zgt_asym n n H H).
Qed.
Lemma Zlt_irrefl : forall n:Z, ~ n < n.
Proof.
intros n H; apply (Zlt_asym n n H H).
Qed.
Lemma Zlt_not_eq : forall n m:Z, n < m -> n <> m.
Proof.
unfold not in |- *; intros x y H H0.
rewrite H0 in H.
apply (Zlt_irrefl _ H).
Qed.
Large = strict or equal
Lemma Zlt_le_weak : forall n m:Z, n < m -> n <= m.
Proof.
intros n m Hlt; apply Znot_gt_le; apply Zgt_asym; apply Zlt_gt; assumption.
Qed.
Lemma Zle_lt_or_eq : forall n m:Z, n <= m -> n < m \/ n = m.
Proof.
intros n m H; destruct (Ztrichotomy n m) as [Hlt| [Heq| Hgt]];
[ left; assumption
| right; assumption
| absurd (n > m); [ apply Zle_not_gt | idtac ]; assumption ].
Qed.
Dichotomy
Lemma Zle_or_lt : forall n m:Z, n <= m \/ m < n.
Proof.
intros n m; destruct (Ztrichotomy n m) as [Hlt| [Heq| Hgt]];
[ left; apply Znot_gt_le; intro Hgt; assert (Hgt' := Zlt_gt _ _ Hlt);
apply Zgt_asym with m n; assumption
| left; rewrite Heq; apply Zle_refl
| right; apply Zgt_lt; assumption ].
Qed.
Transitivity of strict orders
Lemma Zgt_trans : forall n m p:Z, n > m -> m > p -> n > p.
Proof.
exact Zcompare_Gt_trans.
Qed.
Lemma Zlt_trans : forall n m p:Z, n < m -> m < p -> n < p.
Proof.
intros n m p H1 H2; apply Zgt_lt; apply Zgt_trans with (m := m); apply Zlt_gt;
assumption.
Qed.
Mixed transitivity
Lemma Zle_gt_trans : forall n m p:Z, m <= n -> m > p -> n > p.
Proof.
intros n m p H1 H2; destruct (Zle_lt_or_eq m n H1) as [Hlt| Heq];
[ apply Zgt_trans with m; [ apply Zlt_gt; assumption | assumption ]
| rewrite <- Heq; assumption ].
Qed.
Lemma Zgt_le_trans : forall n m p:Z, n > m -> p <= m -> n > p.
Proof.
intros n m p H1 H2; destruct (Zle_lt_or_eq p m H2) as [Hlt| Heq];
[ apply Zgt_trans with m; [ assumption | apply Zlt_gt; assumption ]
| rewrite Heq; assumption ].
Qed.
Lemma Zlt_le_trans : forall n m p:Z, n < m -> m <= p -> n < p.
intros n m p H1 H2; apply Zgt_lt; apply Zle_gt_trans with (m := m);
[ assumption | apply Zlt_gt; assumption ].
Qed.
Lemma Zle_lt_trans : forall n m p:Z, n <= m -> m < p -> n < p.
Proof.
intros n m p H1 H2; apply Zgt_lt; apply Zgt_le_trans with (m := m);
[ apply Zlt_gt; assumption | assumption ].
Qed.
Transitivity of large orders
Lemma Zle_trans : forall n m p:Z, n <= m -> m <= p -> n <= p.
Proof.
intros n m p H1 H2; apply Znot_gt_le.
intro Hgt; apply Zle_not_gt with n m. assumption.
exact (Zgt_le_trans n p m Hgt H2).
Qed.
Lemma Zge_trans : forall n m p:Z, n >= m -> m >= p -> n >= p.
Proof.
intros n m p H1 H2.
apply Zle_ge.
apply Zle_trans with m; apply Zge_le; trivial.
Qed.
Hint Resolve Zle_trans: zarith.
Compatibility of successor wrt to order
Lemma Zsucc_le_compat : forall n m:Z, m <= n -> Zsucc m <= Zsucc n.
Proof.
unfold Zle, not in |- *; intros m n H1 H2; apply H1;
rewrite <- (Zcompare_plus_compat n m 1); do 2 rewrite (Zplus_comm 1);
exact H2.
Qed.
Lemma Zsucc_gt_compat : forall n m:Z, m > n -> Zsucc m > Zsucc n.
Proof.
unfold Zgt in |- *; intros n m H; rewrite Zcompare_succ_compat;
auto with arith.
Qed.
Lemma Zsucc_lt_compat : forall n m:Z, n < m -> Zsucc n < Zsucc m.
Proof.
intros n m H; apply Zgt_lt; apply Zsucc_gt_compat; apply Zlt_gt; assumption.
Qed.
Hint Resolve Zsucc_le_compat: zarith.
Simplification of successor wrt to order
Lemma Zsucc_gt_reg : forall n m:Z, Zsucc m > Zsucc n -> m > n.
Proof.
unfold Zsucc, Zgt in |- *; intros n p;
do 2 rewrite (fun m:Z => Zplus_comm m 1);
rewrite (Zcompare_plus_compat p n 1); trivial with arith.
Qed.
Lemma Zsucc_le_reg : forall n m:Z, Zsucc m <= Zsucc n -> m <= n.
Proof.
unfold Zle, not in |- *; intros m n H1 H2; apply H1; unfold Zsucc in |- *;
do 2 rewrite <- (Zplus_comm 1); rewrite (Zcompare_plus_compat n m 1);
assumption.
Qed.
Lemma Zsucc_lt_reg : forall n m:Z, Zsucc n < Zsucc m -> n < m.
Proof.
intros n m H; apply Zgt_lt; apply Zsucc_gt_reg; apply Zlt_gt; assumption.
Qed.
Special base instances of order
Lemma Zgt_succ : forall n:Z, Zsucc n > n.
Proof.
exact Zcompare_succ_Gt.
Qed.
Lemma Znot_le_succ : forall n:Z, ~ Zsucc n <= n.
Proof.
intros n; apply Zgt_not_le; apply Zgt_succ.
Qed.
Lemma Zlt_succ : forall n:Z, n < Zsucc n.
Proof.
intro n; apply Zgt_lt; apply Zgt_succ.
Qed.
Lemma Zlt_pred : forall n:Z, Zpred n < n.
Proof.
intros n; apply Zsucc_lt_reg; rewrite <- Zsucc_pred; apply Zlt_succ.
Qed.
Relating strict and large order using successor or predecessor
Lemma Zgt_le_succ : forall n m:Z, m > n -> Zsucc n <= m.
Proof.
unfold Zgt, Zle in |- *; intros n p H; elim (Zcompare_Gt_not_Lt p n);
intros H1 H2; unfold not in |- *; intros H3; unfold not in H1;
apply H1;
[ assumption
| elim (Zcompare_Gt_Lt_antisym (n + 1) p); intros H4 H5; apply H4; exact H3 ].
Qed.
Lemma Zlt_gt_succ : forall n m:Z, n <= m -> Zsucc m > n.
Proof.
intros n p H; apply Zgt_le_trans with p.
apply Zgt_succ.
assumption.
Qed.
Lemma Zle_lt_succ : forall n m:Z, n <= m -> n < Zsucc m.
Proof.
intros n m H; apply Zgt_lt; apply Zlt_gt_succ; assumption.
Qed.
Lemma Zlt_le_succ : forall n m:Z, n < m -> Zsucc n <= m.
Proof.
intros n p H; apply Zgt_le_succ; apply Zlt_gt; assumption.
Qed.
Lemma Zgt_succ_le : forall n m:Z, Zsucc m > n -> n <= m.
Proof.
intros n p H; apply Zsucc_le_reg; apply Zgt_le_succ; assumption.
Qed.
Lemma Zlt_succ_le : forall n m:Z, n < Zsucc m -> n <= m.
Proof.
intros n m H; apply Zgt_succ_le; apply Zlt_gt; assumption.
Qed.
Lemma Zlt_succ_gt : forall n m:Z, Zsucc n <= m -> m > n.
Proof.
intros n m H; apply Zle_gt_trans with (m := Zsucc n);
[ assumption | apply Zgt_succ ].
Qed.
Weakening order
Lemma Zle_succ : forall n:Z, n <= Zsucc n.
Proof.
intros n; apply Zgt_succ_le; apply Zgt_trans with (m := Zsucc n);
apply Zgt_succ.
Qed.
Hint Resolve Zle_succ: zarith.
Lemma Zle_pred : forall n:Z, Zpred n <= n.
Proof.
intros n; pattern n at 2 in |- *; rewrite Zsucc_pred; apply Zle_succ.
Qed.
Lemma Zlt_lt_succ : forall n m:Z, n < m -> n < Zsucc m.
intros n m H; apply Zgt_lt; apply Zgt_trans with (m := m);
[ apply Zgt_succ | apply Zlt_gt; assumption ].
Qed.
Lemma Zle_le_succ : forall n m:Z, n <= m -> n <= Zsucc m.
Proof.
intros x y H.
apply Zle_trans with y; trivial with zarith.
Qed.
Lemma Zle_succ_le : forall n m:Z, Zsucc n <= m -> n <= m.
Proof.
intros n m H; apply Zle_trans with (m := Zsucc n);
[ apply Zle_succ | assumption ].
Qed.
Hint Resolve Zle_le_succ: zarith.
Relating order wrt successor and order wrt predecessor
Lemma Zgt_succ_pred : forall n m:Z, m > Zsucc n -> Zpred m > n.
Proof.
unfold Zgt, Zsucc, Zpred in |- *; intros n p H;
rewrite <- (fun x y => Zcompare_plus_compat x y 1);
rewrite (Zplus_comm p); rewrite Zplus_assoc;
rewrite (fun x => Zplus_comm x n); simpl in |- *;
assumption.
Qed.
Lemma Zlt_succ_pred : forall n m:Z, Zsucc n < m -> n < Zpred m.
Proof.
intros n p H; apply Zsucc_lt_reg; rewrite <- Zsucc_pred; assumption.
Qed.
Relating strict order and large order on positive
Lemma Zlt_0_le_0_pred : forall n:Z, 0 < n -> 0 <= Zpred n.
Proof.
intros x H.
rewrite (Zsucc_pred x) in H.
apply Zgt_succ_le.
apply Zlt_gt.
assumption.
Qed.
Lemma Zgt_0_le_0_pred : forall n:Z, n > 0 -> 0 <= Zpred n.
Proof.
intros; apply Zlt_0_le_0_pred; apply Zgt_lt. assumption.
Qed.
Special cases of ordered integers
Lemma Zlt_0_1 : 0 < 1.
Proof.
change (0 < Zsucc 0) in |- *. apply Zlt_succ.
Qed.
Lemma Zle_0_1 : 0 <= 1.
Proof.
change (0 <= Zsucc 0) in |- *. apply Zle_succ.
Qed.
Lemma Zle_neg_pos : forall p q:positive, Zneg p <= Zpos q.
Proof.
intros p; red in |- *; simpl in |- *; red in |- *; intros H; discriminate.
Qed.
Lemma Zgt_pos_0 : forall p:positive, Zpos p > 0.
Proof.
unfold Zgt in |- *; trivial.
Qed.
Lemma Zle_0_pos : forall p:positive, 0 <= Zpos p.
Proof.
intro; unfold Zle in |- *; discriminate.
Qed.
Lemma Zlt_neg_0 : forall p:positive, Zneg p < 0.
Proof.
unfold Zlt in |- *; trivial.
Qed.
Lemma Zle_0_nat : forall n:nat, 0 <= Z_of_nat n.
Proof.
simple induction n; simpl in |- *; intros;
[ apply Zle_refl | unfold Zle in |- *; simpl in |- *; discriminate ].
Qed.
Hint Immediate Zeq_le: zarith.
Transitivity using successor
Lemma Zge_trans_succ : forall n m p:Z, Zsucc n > m -> m > p -> n > p.
Proof.
intros n m p H1 H2; apply Zle_gt_trans with (m := m);
[ apply Zgt_succ_le; assumption | assumption ].
Qed.
Derived lemma
Lemma Zgt_succ_gt_or_eq : forall n m:Z, Zsucc n > m -> n > m \/ m = n.
Proof.
intros n m H.
assert (Hle : m <= n).
apply Zgt_succ_le; assumption.
destruct (Zle_lt_or_eq _ _ Hle) as [Hlt| Heq].
left; apply Zlt_gt; assumption.
right; assumption.
Qed.
Compatibility of addition wrt to order
Lemma Zplus_gt_compat_l : forall n m p:Z, n > m -> p + n > p + m.
Proof.
unfold Zgt in |- *; intros n m p H; rewrite (Zcompare_plus_compat n m p);
assumption.
Qed.
Lemma Zplus_gt_compat_r : forall n m p:Z, n > m -> n + p > m + p.
Proof.
intros n m p H; rewrite (Zplus_comm n p); rewrite (Zplus_comm m p);
apply Zplus_gt_compat_l; trivial.
Qed.
Lemma Zplus_le_compat_l : forall n m p:Z, n <= m -> p + n <= p + m.
Proof.
intros n m p; unfold Zle, not in |- *; intros H1 H2; apply H1;
rewrite <- (Zcompare_plus_compat n m p); assumption.
Qed.
Lemma Zplus_le_compat_r : forall n m p:Z, n <= m -> n + p <= m + p.
Proof.
intros a b c; do 2 rewrite (fun n:Z => Zplus_comm n c);
exact (Zplus_le_compat_l a b c).
Qed.
Lemma Zplus_lt_compat_l : forall n m p:Z, n < m -> p + n < p + m.
Proof.
unfold Zlt in |- *; intros n m p; rewrite Zcompare_plus_compat;
trivial with arith.
Qed.
Lemma Zplus_lt_compat_r : forall n m p:Z, n < m -> n + p < m + p.
Proof.
intros n m p H; rewrite (Zplus_comm n p); rewrite (Zplus_comm m p);
apply Zplus_lt_compat_l; trivial.
Qed.
Lemma Zplus_lt_le_compat : forall n m p q:Z, n < m -> p <= q -> n + p < m + q.
Proof.
intros a b c d H0 H1.
apply Zlt_le_trans with (b + c).
apply Zplus_lt_compat_r; trivial.
apply Zplus_le_compat_l; trivial.
Qed.
Lemma Zplus_le_lt_compat : forall n m p q:Z, n <= m -> p < q -> n + p < m + q.
Proof.
intros a b c d H0 H1.
apply Zle_lt_trans with (b + c).
apply Zplus_le_compat_r; trivial.
apply Zplus_lt_compat_l; trivial.
Qed.
Lemma Zplus_le_compat : forall n m p q:Z, n <= m -> p <= q -> n + p <= m + q.
Proof.
intros n m p q; intros H1 H2; apply Zle_trans with (m := n + q);
[ apply Zplus_le_compat_l; assumption
| apply Zplus_le_compat_r; assumption ].
Qed.
Lemma Zplus_lt_compat : forall n m p q:Z, n < m -> p < q -> n + p < m + q.
intros; apply Zplus_le_lt_compat. apply Zlt_le_weak; assumption. assumption.
Qed.
Compatibility of addition wrt to being positive
Lemma Zplus_le_0_compat : forall n m:Z, 0 <= n -> 0 <= m -> 0 <= n + m.
Proof.
intros x y H1 H2; rewrite <- (Zplus_0_l 0); apply Zplus_le_compat; assumption.
Qed.
Simplification of addition wrt to order
Lemma Zplus_gt_reg_l : forall n m p:Z, p + n > p + m -> n > m.
Proof.
unfold Zgt in |- *; intros n m p H; rewrite <- (Zcompare_plus_compat n m p);
assumption.
Qed.
Lemma Zplus_gt_reg_r : forall n m p:Z, n + p > m + p -> n > m.
Proof.
intros n m p H; apply Zplus_gt_reg_l with p.
rewrite (Zplus_comm p n); rewrite (Zplus_comm p m); trivial.
Qed.
Lemma Zplus_le_reg_l : forall n m p:Z, p + n <= p + m -> n <= m.
Proof.
intros n m p; unfold Zle, not in |- *; intros H1 H2; apply H1;
rewrite (Zcompare_plus_compat n m p); assumption.
Qed.
Lemma Zplus_le_reg_r : forall n m p:Z, n + p <= m + p -> n <= m.
Proof.
intros n m p H; apply Zplus_le_reg_l with p.
rewrite (Zplus_comm p n); rewrite (Zplus_comm p m); trivial.
Qed.
Lemma Zplus_lt_reg_l : forall n m p:Z, p + n < p + m -> n < m.
Proof.
unfold Zlt in |- *; intros n m p; rewrite Zcompare_plus_compat;
trivial with arith.
Qed.
Lemma Zplus_lt_reg_r : forall n m p:Z, n + p < m + p -> n < m.
Proof.
intros n m p H; apply Zplus_lt_reg_l with p.
rewrite (Zplus_comm p n); rewrite (Zplus_comm p m); trivial.
Qed.
Compatibility of multiplication by a positive wrt to order
Lemma Zmult_le_compat_r : forall n m p:Z, n <= m -> 0 <= p -> n * p <= m * p.
Proof.
intros a b c H H0; destruct c.
do 2 rewrite Zmult_0_r; assumption.
rewrite (Zmult_comm a); rewrite (Zmult_comm b).
unfold Zle in |- *; rewrite Zcompare_mult_compat; assumption.
unfold Zle in H0; contradiction H0; reflexivity.
Qed.
Lemma Zmult_le_compat_l : forall n m p:Z, n <= m -> 0 <= p -> p * n <= p * m.
Proof.
intros a b c H1 H2; rewrite (Zmult_comm c a); rewrite (Zmult_comm c b).
apply Zmult_le_compat_r; trivial.
Qed.
Lemma Zmult_lt_compat_r : forall n m p:Z, 0 < p -> n < m -> n * p < m * p.
Proof.
intros x y z H H0; destruct z.
contradiction (Zlt_irrefl 0).
rewrite (Zmult_comm x); rewrite (Zmult_comm y).
unfold Zlt in |- *; rewrite Zcompare_mult_compat; assumption.
discriminate H.
Qed.
Lemma Zmult_gt_compat_r : forall n m p:Z, p > 0 -> n > m -> n * p > m * p.
Proof.
intros x y z; intros; apply Zlt_gt; apply Zmult_lt_compat_r; apply Zgt_lt;
assumption.
Qed.
Lemma Zmult_gt_0_lt_compat_r :
forall n m p:Z, p > 0 -> n < m -> n * p < m * p.
Proof.
intros x y z; intros; apply Zmult_lt_compat_r;
[ apply Zgt_lt; assumption | assumption ].
Qed.
Lemma Zmult_gt_0_le_compat_r :
forall n m p:Z, p > 0 -> n <= m -> n * p <= m * p.
Proof.
intros x y z Hz Hxy.
elim (Zle_lt_or_eq x y Hxy).
intros; apply Zlt_le_weak.
apply Zmult_gt_0_lt_compat_r; trivial.
intros; apply Zeq_le.
rewrite H; trivial.
Qed.
Lemma Zmult_lt_0_le_compat_r :
forall n m p:Z, 0 < p -> n <= m -> n * p <= m * p.
Proof.
intros x y z; intros; apply Zmult_gt_0_le_compat_r; try apply Zlt_gt;
assumption.
Qed.
Lemma Zmult_gt_0_lt_compat_l :
forall n m p:Z, p > 0 -> n < m -> p * n < p * m.
Proof.
intros x y z; intros.
rewrite (Zmult_comm z x); rewrite (Zmult_comm z y);
apply Zmult_gt_0_lt_compat_r; assumption.
Qed.
Lemma Zmult_lt_compat_l : forall n m p:Z, 0 < p -> n < m -> p * n < p * m.
Proof.
intros x y z; intros.
rewrite (Zmult_comm z x); rewrite (Zmult_comm z y);
apply Zmult_gt_0_lt_compat_r; try apply Zlt_gt; assumption.
Qed.
Lemma Zmult_gt_compat_l : forall n m p:Z, p > 0 -> n > m -> p * n > p * m.
Proof.
intros x y z; intros; rewrite (Zmult_comm z x); rewrite (Zmult_comm z y);
apply Zmult_gt_compat_r; assumption.
Qed.
Lemma Zmult_ge_compat_r : forall n m p:Z, n >= m -> p >= 0 -> n * p >= m * p.
Proof.
intros a b c H1 H2; apply Zle_ge.
apply Zmult_le_compat_r; apply Zge_le; trivial.
Qed.
Lemma Zmult_ge_compat_l : forall n m p:Z, n >= m -> p >= 0 -> p * n >= p * m.
Proof.
intros a b c H1 H2; apply Zle_ge.
apply Zmult_le_compat_l; apply Zge_le; trivial.
Qed.
Lemma Zmult_ge_compat :
forall n m p q:Z, n >= p -> m >= q -> p >= 0 -> q >= 0 -> n * m >= p * q.
Proof.
intros a b c d H0 H1 H2 H3.
apply Zge_trans with (a * d).
apply Zmult_ge_compat_l; trivial.
apply Zge_trans with c; trivial.
apply Zmult_ge_compat_r; trivial.
Qed.
Lemma Zmult_le_compat :
forall n m p q:Z, n <= p -> m <= q -> 0 <= n -> 0 <= m -> n * m <= p * q.
Proof.
intros a b c d H0 H1 H2 H3.
apply Zle_trans with (c * b).
apply Zmult_le_compat_r; assumption.
apply Zmult_le_compat_l.
assumption.
apply Zle_trans with a; assumption.
Qed.
Simplification of multiplication by a positive wrt to being positive
Lemma Zmult_gt_0_lt_reg_r : forall n m p:Z, p > 0 -> n * p < m * p -> n < m.
Proof.
intros x y z; intros; destruct z.
contradiction (Zgt_irrefl 0).
rewrite (Zmult_comm x) in H0; rewrite (Zmult_comm y) in H0.
unfold Zlt in H0; rewrite Zcompare_mult_compat in H0; assumption.
discriminate H.
Qed.
Lemma Zmult_lt_reg_r : forall n m p:Z, 0 < p -> n * p < m * p -> n < m.
Proof.
intros a b c H0 H1.
apply Zmult_gt_0_lt_reg_r with c; try apply Zlt_gt; assumption.
Qed.
Lemma Zmult_le_reg_r : forall n m p:Z, p > 0 -> n * p <= m * p -> n <= m.
Proof.
intros x y z Hz Hxy.
elim (Zle_lt_or_eq (x * z) (y * z) Hxy).
intros; apply Zlt_le_weak.
apply Zmult_gt_0_lt_reg_r with z; trivial.
intros; apply Zeq_le.
apply Zmult_reg_r with z.
intro. rewrite H0 in Hz. contradiction (Zgt_irrefl 0).
assumption.
Qed.
Lemma Zmult_lt_0_le_reg_r : forall n m p:Z, 0 < p -> n * p <= m * p -> n <= m.
Proof.
intros x y z; intros; apply Zmult_le_reg_r with z.
try apply Zlt_gt; assumption.
assumption.
Qed.
Lemma Zmult_ge_reg_r : forall n m p:Z, p > 0 -> n * p >= m * p -> n >= m.
Proof.
intros a b c H1 H2; apply Zle_ge; apply Zmult_le_reg_r with c; trivial.
apply Zge_le; trivial.
Qed.
Lemma Zmult_gt_reg_r : forall n m p:Z, p > 0 -> n * p > m * p -> n > m.
Proof.
intros a b c H1 H2; apply Zlt_gt; apply Zmult_gt_0_lt_reg_r with c; trivial.
apply Zgt_lt; trivial.
Qed.
Compatibility of multiplication by a positive wrt to being positive
Lemma Zmult_le_0_compat : forall n m:Z, 0 <= n -> 0 <= m -> 0 <= n * m.
Proof.
intros x y; case x.
intros; rewrite Zmult_0_l; trivial.
intros p H1; unfold Zle in |- *.
pattern 0 at 2 in |- *; rewrite <- (Zmult_0_r (Zpos p)).
rewrite Zcompare_mult_compat; trivial.
intros p H1 H2; absurd (0 > Zneg p); trivial.
unfold Zgt in |- *; simpl in |- *; auto with zarith.
Qed.
Lemma Zmult_gt_0_compat : forall n m:Z, n > 0 -> m > 0 -> n * m > 0.
Proof.
intros x y; case x.
intros H; discriminate H.
intros p H1; unfold Zgt in |- *; pattern 0 at 2 in |- *;
rewrite <- (Zmult_0_r (Zpos p)).
rewrite Zcompare_mult_compat; trivial.
intros p H; discriminate H.
Qed.
Lemma Zmult_lt_0_compat : forall n m:Z, 0 < n -> 0 < m -> 0 < n * m.
Proof.
intros a b apos bpos.
apply Zgt_lt.
apply Zmult_gt_0_compat; try apply Zlt_gt; assumption.
Qed.
For compatibility
Notation Zmult_lt_O_compat := Zmult_lt_0_compat (only parsing).
Lemma Zmult_gt_0_le_0_compat : forall n m:Z, n > 0 -> 0 <= m -> 0 <= m * n.
Proof.
intros x y H1 H2; apply Zmult_le_0_compat; trivial.
apply Zlt_le_weak; apply Zgt_lt; trivial.
Qed.
Simplification of multiplication by a positive wrt to being positive
Lemma Zmult_le_0_reg_r : forall n m:Z, n > 0 -> 0 <= m * n -> 0 <= m.
Proof.
intros x y; case x;
[ simpl in |- *; unfold Zgt in |- *; simpl in |- *; intros H; discriminate H
| intros p H1; unfold Zle in |- *; rewrite Zmult_comm;
pattern 0 at 1 in |- *; rewrite <- (Zmult_0_r (Zpos p));
rewrite Zcompare_mult_compat; auto with arith
| intros p; unfold Zgt in |- *; simpl in |- *; intros H; discriminate H ].
Qed.
Lemma Zmult_gt_0_lt_0_reg_r : forall n m:Z, n > 0 -> 0 < m * n -> 0 < m.
Proof.
intros x y; case x;
[ simpl in |- *; unfold Zgt in |- *; simpl in |- *; intros H; discriminate H
| intros p H1; unfold Zlt in |- *; rewrite Zmult_comm;
pattern 0 at 1 in |- *; rewrite <- (Zmult_0_r (Zpos p));
rewrite Zcompare_mult_compat; auto with arith
| intros p; unfold Zgt in |- *; simpl in |- *; intros H; discriminate H ].
Qed.
Lemma Zmult_lt_0_reg_r : forall n m:Z, 0 < n -> 0 < m * n -> 0 < m.
Proof.
intros x y; intros; eapply Zmult_gt_0_lt_0_reg_r with x; try apply Zlt_gt;
assumption.
Qed.
Lemma Zmult_gt_0_reg_l : forall n m:Z, n > 0 -> n * m > 0 -> m > 0.
Proof.
intros x y; case x.
intros H; discriminate H.
intros p H1; unfold Zgt in |- *.
pattern 0 at 1 in |- *; rewrite <- (Zmult_0_r (Zpos p)).
rewrite Zcompare_mult_compat; trivial.
intros p H; discriminate H.
Qed.
Simplification of square wrt order
Lemma Zgt_square_simpl :
forall n m:Z, n >= 0 -> n * n > m * m -> n > m.
Proof.
intros n m H0 H1.
case (dec_Zlt m n).
intro; apply Zlt_gt; trivial.
intros H2; cut (m >= n).
intros H.
elim Zgt_not_le with (1 := H1).
apply Zge_le.
apply Zmult_ge_compat; auto.
apply Znot_lt_ge; trivial.
Qed.
Lemma Zlt_square_simpl :
forall n m:Z, 0 <= n -> m * m < n * n -> m < n.
Proof.
intros x y H0 H1.
apply Zgt_lt.
apply Zgt_square_simpl; try apply Zle_ge; try apply Zlt_gt; assumption.
Qed.
Lemma Zle_plus_swap : forall n m p:Z, n + p <= m <-> n <= m - p.
Proof.
intros x y z; intros. split. intro. rewrite <- (Zplus_0_r x). rewrite <- (Zplus_opp_r z).
rewrite Zplus_assoc. exact (Zplus_le_compat_r _ _ _ H).
intro. rewrite <- (Zplus_0_r y). rewrite <- (Zplus_opp_l z). rewrite Zplus_assoc.
apply Zplus_le_compat_r. assumption.
Qed.
Lemma Zlt_plus_swap : forall n m p:Z, n + p < m <-> n < m - p.
Proof.
intros x y z; intros. split. intro. unfold Zminus in |- *. rewrite Zplus_comm. rewrite <- (Zplus_0_l x).
rewrite <- (Zplus_opp_l z). rewrite Zplus_assoc_reverse. apply Zplus_lt_compat_l. rewrite Zplus_comm.
assumption.
intro. rewrite Zplus_comm. rewrite <- (Zplus_0_l y). rewrite <- (Zplus_opp_r z).
rewrite Zplus_assoc_reverse. apply Zplus_lt_compat_l. rewrite Zplus_comm. assumption.
Qed.
Lemma Zeq_plus_swap : forall n m p:Z, n + p = m <-> n = m - p.
Proof.
intros x y z; intros. split. intro. apply Zplus_minus_eq. symmetry in |- *. rewrite Zplus_comm.
assumption.
intro. rewrite H. unfold Zminus in |- *. rewrite Zplus_assoc_reverse.
rewrite Zplus_opp_l. apply Zplus_0_r.
Qed.
Lemma Zlt_minus_simpl_swap : forall n m:Z, 0 < m -> n - m < n.
Proof.
intros n m H; apply Zplus_lt_reg_l with (p := m); rewrite Zplus_minus;
pattern n at 1 in |- *; rewrite <- (Zplus_0_r n);
rewrite (Zplus_comm m n); apply Zplus_lt_compat_l;
assumption.
Qed.
Lemma Zlt_0_minus_lt : forall n m:Z, 0 < n - m -> m < n.
Proof.
intros n m H; apply Zplus_lt_reg_l with (p := - m); rewrite Zplus_opp_l;
rewrite Zplus_comm; exact H.
Qed.
Lemma Zle_0_minus_le : forall n m:Z, 0 <= n - m -> m <= n.
Proof.
intros n m H; apply Zplus_le_reg_l with (p := - m); rewrite Zplus_opp_l;
rewrite Zplus_comm; exact H.
Qed.
Lemma Zle_minus_le_0 : forall n m:Z, m <= n -> 0 <= n - m.
Proof.
intros n m H; unfold Zminus; apply Zplus_le_reg_r with (p := m);
rewrite <- Zplus_assoc; rewrite Zplus_opp_l; rewrite Zplus_0_r; exact H.
Qed.
For compatibility
Notation Zlt_O_minus_lt := Zlt_0_minus_lt (only parsing).