Library Coq.ZArith.Znat
Binary Integers (Pierre Crégut, CNET, Lannion, France)
Require Export Arith_base.
Require Import BinPos.
Require Import BinInt.
Require Import Zcompare.
Require Import Zorder.
Require Import Decidable.
Require Import Peano_dec.
Require Export Compare_dec.
Open Local Scope Z_scope.
Definition neq (x y:nat) := x <> y.
Properties of the injection from nat into Z
Theorem inj_S : forall n:nat, Z_of_nat (S n) = Zsucc (Z_of_nat n).
Proof.
intro y; induction y as [| n H];
[ unfold Zsucc in |- *; simpl in |- *; trivial with arith
| change (Zpos (Psucc (P_of_succ_nat n)) = Zsucc (Z_of_nat (S n))) in |- *;
rewrite Zpos_succ_morphism; trivial with arith ].
Qed.
Theorem inj_plus : forall n m:nat, Z_of_nat (n + m) = Z_of_nat n + Z_of_nat m.
Proof.
intro x; induction x as [| n H]; intro y; destruct y as [| m];
[ simpl in |- *; trivial with arith
| simpl in |- *; trivial with arith
| simpl in |- *; rewrite <- plus_n_O; trivial with arith
| change (Z_of_nat (S (n + S m)) = Z_of_nat (S n) + Z_of_nat (S m)) in |- *;
rewrite inj_S; rewrite H; do 2 rewrite inj_S; rewrite Zplus_succ_l;
trivial with arith ].
Qed.
Theorem inj_mult : forall n m:nat, Z_of_nat (n * m) = Z_of_nat n * Z_of_nat m.
Proof.
intro x; induction x as [| n H];
[ simpl in |- *; trivial with arith
| intro y; rewrite inj_S; rewrite <- Zmult_succ_l_reverse; rewrite <- H;
rewrite <- inj_plus; simpl in |- *; rewrite plus_comm;
trivial with arith ].
Qed.
Theorem inj_neq : forall n m:nat, neq n m -> Zne (Z_of_nat n) (Z_of_nat m).
Proof.
unfold neq, Zne, not in |- *; intros x y H1 H2; apply H1; generalize H2;
case x; case y; intros;
[ auto with arith
| discriminate H0
| discriminate H0
| simpl in H0; injection H0;
do 2 rewrite <- nat_of_P_o_P_of_succ_nat_eq_succ;
intros E; rewrite E; auto with arith ].
Qed.
Theorem inj_le : forall n m:nat, (n <= m)%nat -> Z_of_nat n <= Z_of_nat m.
Proof.
intros x y; intros H; elim H;
[ unfold Zle in |- *; elim (Zcompare_Eq_iff_eq (Z_of_nat x) (Z_of_nat x));
intros H1 H2; rewrite H2; [ discriminate | trivial with arith ]
| intros m H1 H2; apply Zle_trans with (Z_of_nat m);
[ assumption | rewrite inj_S; apply Zle_succ ] ].
Qed.
Theorem inj_lt : forall n m:nat, (n < m)%nat -> Z_of_nat n < Z_of_nat m.
Proof.
intros x y H; apply Zgt_lt; apply Zlt_succ_gt; rewrite <- inj_S; apply inj_le;
exact H.
Qed.
Theorem inj_gt : forall n m:nat, (n > m)%nat -> Z_of_nat n > Z_of_nat m.
Proof.
intros x y H; apply Zlt_gt; apply inj_lt; exact H.
Qed.
Theorem inj_ge : forall n m:nat, (n >= m)%nat -> Z_of_nat n >= Z_of_nat m.
Proof.
intros x y H; apply Zle_ge; apply inj_le; apply H.
Qed.
Theorem inj_eq : forall n m:nat, n = m -> Z_of_nat n = Z_of_nat m.
Proof.
intros x y H; rewrite H; trivial with arith.
Qed.
Theorem intro_Z :
forall n:nat, exists y : Z, Z_of_nat n = y /\ 0 <= y * 1 + 0.
Proof.
intros x; exists (Z_of_nat x); split;
[ trivial with arith
| rewrite Zmult_comm; rewrite Zmult_1_l; rewrite Zplus_0_r;
unfold Zle in |- *; elim x; intros; simpl in |- *;
discriminate ].
Qed.
Theorem inj_minus1 :
forall n m:nat, (m <= n)%nat -> Z_of_nat (n - m) = Z_of_nat n - Z_of_nat m.
Proof.
intros x y H; apply (Zplus_reg_l (Z_of_nat y)); unfold Zminus in |- *;
rewrite Zplus_permute; rewrite Zplus_opp_r; rewrite <- inj_plus;
rewrite <- (le_plus_minus y x H); rewrite Zplus_0_r;
trivial with arith.
Qed.
Theorem inj_minus2 : forall n m:nat, (m > n)%nat -> Z_of_nat (n - m) = 0.
Proof.
intros x y H; rewrite not_le_minus_0;
[ trivial with arith | apply gt_not_le; assumption ].
Qed.
Theorem Zpos_eq_Z_of_nat_o_nat_of_P :
forall p:positive, Zpos p = Z_of_nat (nat_of_P p).
Proof.
intros x; elim x; simpl in |- *; auto.
intros p H; rewrite ZL6.
apply f_equal with (f := Zpos).
apply nat_of_P_inj.
rewrite nat_of_P_o_P_of_succ_nat_eq_succ; unfold nat_of_P in |- *;
simpl in |- *.
rewrite ZL6; auto.
intros p H; unfold nat_of_P in |- *; simpl in |- *.
rewrite ZL6; simpl in |- *.
rewrite inj_plus; repeat rewrite <- H.
rewrite Zpos_xO; simpl in |- *; rewrite Pplus_diag; reflexivity.
Qed.