Library Coq.Sets.Uniset
Sets as characteristic functions
Require Import Bool.
Set Implicit Arguments.
Section defs.
Variable A : Set.
Variable eqA : A -> A -> Prop.
Hypothesis eqA_dec : forall x y:A, {eqA x y} + {~ eqA x y}.
Inductive uniset : Set :=
Charac : (A -> bool) -> uniset.
Definition charac (s:uniset) (a:A) : bool := let (f) := s in f a.
Definition Emptyset := Charac (fun a:A => false).
Definition Fullset := Charac (fun a:A => true).
Definition Singleton (a:A) :=
Charac
(fun a':A =>
match eqA_dec a a' with
| left h => true
| right h => false
end).
Definition In (s:uniset) (a:A) : Prop := charac s a = true.
Hint Unfold In.
uniset inclusion
Definition incl (s1 s2:uniset) := forall a:A, leb (charac s1 a) (charac s2 a).
Hint Unfold incl.
uniset equality
Definition seq (s1 s2:uniset) := forall a:A, charac s1 a = charac s2 a.
Hint Unfold seq.
Lemma leb_refl : forall b:bool, leb b b.
Proof.
destruct b; simpl in |- *; auto.
Qed.
Hint Resolve leb_refl.
Lemma incl_left : forall s1 s2:uniset, seq s1 s2 -> incl s1 s2.
Proof.
unfold incl in |- *; intros s1 s2 E a; elim (E a); auto.
Qed.
Lemma incl_right : forall s1 s2:uniset, seq s1 s2 -> incl s2 s1.
Proof.
unfold incl in |- *; intros s1 s2 E a; elim (E a); auto.
Qed.
Lemma seq_refl : forall x:uniset, seq x x.
Proof.
destruct x; unfold seq in |- *; auto.
Qed.
Hint Resolve seq_refl.
Lemma seq_trans : forall x y z:uniset, seq x y -> seq y z -> seq x z.
Proof.
unfold seq in |- *.
destruct x; destruct y; destruct z; simpl in |- *; intros.
rewrite H; auto.
Qed.
Lemma seq_sym : forall x y:uniset, seq x y -> seq y x.
Proof.
unfold seq in |- *.
destruct x; destruct y; simpl in |- *; auto.
Qed.
uniset union
Definition union (m1 m2:uniset) :=
Charac (fun a:A => orb (charac m1 a) (charac m2 a)).
Lemma union_empty_left : forall x:uniset, seq x (union Emptyset x).
Proof.
unfold seq in |- *; unfold union in |- *; simpl in |- *; auto.
Qed.
Hint Resolve union_empty_left.
Lemma union_empty_right : forall x:uniset, seq x (union x Emptyset).
Proof.
unfold seq in |- *; unfold union in |- *; simpl in |- *.
intros x a; rewrite (orb_b_false (charac x a)); auto.
Qed.
Hint Resolve union_empty_right.
Lemma union_comm : forall x y:uniset, seq (union x y) (union y x).
Proof.
unfold seq in |- *; unfold charac in |- *; unfold union in |- *.
destruct x; destruct y; auto with bool.
Qed.
Hint Resolve union_comm.
Lemma union_ass :
forall x y z:uniset, seq (union (union x y) z) (union x (union y z)).
Proof.
unfold seq in |- *; unfold union in |- *; unfold charac in |- *.
destruct x; destruct y; destruct z; auto with bool.
Qed.
Hint Resolve union_ass.
Lemma seq_left : forall x y z:uniset, seq x y -> seq (union x z) (union y z).
Proof.
unfold seq in |- *; unfold union in |- *; unfold charac in |- *.
destruct x; destruct y; destruct z.
intros; elim H; auto.
Qed.
Hint Resolve seq_left.
Lemma seq_right : forall x y z:uniset, seq x y -> seq (union z x) (union z y).
Proof.
unfold seq in |- *; unfold union in |- *; unfold charac in |- *.
destruct x; destruct y; destruct z.
intros; elim H; auto.
Qed.
Hint Resolve seq_right.
All the proofs that follow duplicate
Multiset_of_A
Here we should make uniset an abstract datatype, by hiding
Charac
,
union
, charac
; all further properties are proved abstractly
Require Import Permut.
Lemma union_rotate :
forall x y z:uniset, seq (union x (union y z)) (union z (union x y)).
Proof.
intros; apply (op_rotate uniset union seq); auto.
exact seq_trans.
Qed.
Lemma seq_congr :
forall x y z t:uniset, seq x y -> seq z t -> seq (union x z) (union y t).
Proof.
intros; apply (cong_congr uniset union seq); auto.
exact seq_trans.
Qed.
Lemma union_perm_left :
forall x y z:uniset, seq (union x (union y z)) (union y (union x z)).
Proof.
intros; apply (perm_left uniset union seq); auto.
exact seq_trans.
Qed.
Lemma uniset_twist1 :
forall x y z t:uniset,
seq (union x (union (union y z) t)) (union (union y (union x t)) z).
Proof.
intros; apply (twist uniset union seq); auto.
exact seq_trans.
Qed.
Lemma uniset_twist2 :
forall x y z t:uniset,
seq (union x (union (union y z) t)) (union (union y (union x z)) t).
Proof.
intros; apply seq_trans with (union (union x (union y z)) t).
apply seq_sym; apply union_ass.
apply seq_left; apply union_perm_left.
Qed.
specific for treesort
Lemma treesort_twist1 :
forall x y z t u:uniset,
seq u (union y z) ->
seq (union x (union u t)) (union (union y (union x t)) z).
Proof.
intros; apply seq_trans with (union x (union (union y z) t)).
apply seq_right; apply seq_left; trivial.
apply uniset_twist1.
Qed.
Lemma treesort_twist2 :
forall x y z t u:uniset,
seq u (union y z) ->
seq (union x (union u t)) (union (union y (union x z)) t).
Proof.
intros; apply seq_trans with (union x (union (union y z) t)).
apply seq_right; apply seq_left; trivial.
apply uniset_twist2.
Qed.
End defs.
Unset Implicit Arguments.