Library Coq.Arith.EqNat
Equality on natural numbers
Open Local Scope nat_scope.
Implicit Types m n x y : nat.
Fixpoint eq_nat n m {struct n} : Prop :=
match n, m with
| O, O => True
| O, S _ => False
| S _, O => False
| S n1, S m1 => eq_nat n1 m1
end.
Theorem eq_nat_refl : forall n, eq_nat n n.
induction n; simpl in |- *; auto.
Qed.
Hint Resolve eq_nat_refl: arith v62.
eq
restricted to nat
and eq_nat
are equivalent
Lemma eq_eq_nat : forall n m, n = m -> eq_nat n m.
induction 1; trivial with arith.
Qed.
Hint Immediate eq_eq_nat: arith v62.
Lemma eq_nat_eq : forall n m, eq_nat n m -> n = m.
induction n; induction m; simpl in |- *; contradiction || auto with arith.
Qed.
Hint Immediate eq_nat_eq: arith v62.
Theorem eq_nat_is_eq : forall n m, eq_nat n m <-> n = m.
Proof.
split; auto with arith.
Qed.
Theorem eq_nat_elim :
forall n (P:nat -> Prop), P n -> forall m, eq_nat n m -> P m.
Proof.
intros; replace m with n; auto with arith.
Qed.
Theorem eq_nat_decide : forall n m, {eq_nat n m} + {~ eq_nat n m}.
Proof.
induction n.
destruct m as [| n].
auto with arith.
intros; right; red in |- *; trivial with arith.
destruct m as [| n0].
right; red in |- *; auto with arith.
intros.
simpl in |- *.
apply IHn.
Defined.
Fixpoint beq_nat n m {struct n} : bool :=
match n, m with
| O, O => true
| O, S _ => false
| S _, O => false
| S n1, S m1 => beq_nat n1 m1
end.
Lemma beq_nat_refl : forall n, true = beq_nat n n.
Proof.
intro x; induction x; simpl in |- *; auto.
Qed.
Definition beq_nat_eq : forall x y, true = beq_nat x y -> x = y.
Proof.
double induction x y; simpl in |- *.
reflexivity.
intros n H1 H2. discriminate H2.
intros n H1 H2. discriminate H2.
intros n H1 z H2 H3. case (H2 _ H3). reflexivity.
Defined.