Library Coq.NArith.BinPos
Unset Boxed Definitions.
Binary positive numbers
Original development by Pierre Crégut, CNET, Lannion, France
Inductive positive : Set :=
| xI : positive -> positive
| xO : positive -> positive
| xH : positive.
Declare binding key for scope positive_scope
Delimit Scope positive_scope with positive.
Automatically open scope positive_scope for type positive, xO and xI
Bind Scope positive_scope with positive.
Arguments Scope xO [positive_scope].
Arguments Scope xI [positive_scope].
Successor
Fixpoint Psucc (x:positive) : positive :=
match x with
| xI x' => xO (Psucc x')
| xO x' => xI x'
| xH => xO xH
end.
Addition
Set Boxed Definitions.
Fixpoint Pplus (x y:positive) {struct x} : positive :=
match x, y with
| xI x', xI y' => xO (Pplus_carry x' y')
| xI x', xO y' => xI (Pplus x' y')
| xI x', xH => xO (Psucc x')
| xO x', xI y' => xI (Pplus x' y')
| xO x', xO y' => xO (Pplus x' y')
| xO x', xH => xI x'
| xH, xI y' => xO (Psucc y')
| xH, xO y' => xI y'
| xH, xH => xO xH
end
with Pplus_carry (x y:positive) {struct x} : positive :=
match x, y with
| xI x', xI y' => xI (Pplus_carry x' y')
| xI x', xO y' => xO (Pplus_carry x' y')
| xI x', xH => xI (Psucc x')
| xO x', xI y' => xO (Pplus_carry x' y')
| xO x', xO y' => xI (Pplus x' y')
| xO x', xH => xO (Psucc x')
| xH, xI y' => xI (Psucc y')
| xH, xO y' => xO (Psucc y')
| xH, xH => xI xH
end.
Unset Boxed Definitions.
Infix "+" := Pplus : positive_scope.
Open Local Scope positive_scope.
From binary positive numbers to Peano natural numbers
Fixpoint Pmult_nat (x:positive) (pow2:nat) {struct x} : nat :=
match x with
| xI x' => (pow2 + Pmult_nat x' (pow2 + pow2))%nat
| xO x' => Pmult_nat x' (pow2 + pow2)%nat
| xH => pow2
end.
Definition nat_of_P (x:positive) := Pmult_nat x 1.
From Peano natural numbers to binary positive numbers
Fixpoint P_of_succ_nat (n:nat) : positive :=
match n with
| O => xH
| S x' => Psucc (P_of_succ_nat x')
end.
Operation x -> 2*x-1
Fixpoint Pdouble_minus_one (x:positive) : positive :=
match x with
| xI x' => xI (xO x')
| xO x' => xI (Pdouble_minus_one x')
| xH => xH
end.
Predecessor
Definition Ppred (x:positive) :=
match x with
| xI x' => xO x'
| xO x' => Pdouble_minus_one x'
| xH => xH
end.
An auxiliary type for subtraction
Inductive positive_mask : Set :=
| IsNul : positive_mask
| IsPos : positive -> positive_mask
| IsNeg : positive_mask.
Operation x -> 2*x+1
Definition Pdouble_plus_one_mask (x:positive_mask) :=
match x with
| IsNul => IsPos xH
| IsNeg => IsNeg
| IsPos p => IsPos (xI p)
end.
Operation x -> 2*x
Definition Pdouble_mask (x:positive_mask) :=
match x with
| IsNul => IsNul
| IsNeg => IsNeg
| IsPos p => IsPos (xO p)
end.
Operation x -> 2*x-2
Definition Pdouble_minus_two (x:positive) :=
match x with
| xI x' => IsPos (xO (xO x'))
| xO x' => IsPos (xO (Pdouble_minus_one x'))
| xH => IsNul
end.
Subtraction of binary positive numbers into a positive numbers mask
Fixpoint Pminus_mask (x y:positive) {struct y} : positive_mask :=
match x, y with
| xI x', xI y' => Pdouble_mask (Pminus_mask x' y')
| xI x', xO y' => Pdouble_plus_one_mask (Pminus_mask x' y')
| xI x', xH => IsPos (xO x')
| xO x', xI y' => Pdouble_plus_one_mask (Pminus_mask_carry x' y')
| xO x', xO y' => Pdouble_mask (Pminus_mask x' y')
| xO x', xH => IsPos (Pdouble_minus_one x')
| xH, xH => IsNul
| xH, _ => IsNeg
end
with Pminus_mask_carry (x y:positive) {struct y} : positive_mask :=
match x, y with
| xI x', xI y' => Pdouble_plus_one_mask (Pminus_mask_carry x' y')
| xI x', xO y' => Pdouble_mask (Pminus_mask x' y')
| xI x', xH => IsPos (Pdouble_minus_one x')
| xO x', xI y' => Pdouble_mask (Pminus_mask_carry x' y')
| xO x', xO y' => Pdouble_plus_one_mask (Pminus_mask_carry x' y')
| xO x', xH => Pdouble_minus_two x'
| xH, _ => IsNeg
end.
Subtraction of binary positive numbers x and y, returns 1 if x<=y
Definition Pminus (x y:positive) :=
match Pminus_mask x y with
| IsPos z => z
| _ => xH
end.
Infix "-" := Pminus : positive_scope.
Multiplication on binary positive numbers
Fixpoint Pmult (x y:positive) {struct x} : positive :=
match x with
| xI x' => y + xO (Pmult x' y)
| xO x' => xO (Pmult x' y)
| xH => y
end.
Infix "*" := Pmult : positive_scope.
Division by 2 rounded below but for 1
Definition Pdiv2 (z:positive) :=
match z with
| xH => xH
| xO p => p
| xI p => p
end.
Infix "/" := Pdiv2 : positive_scope.
Comparison on binary positive numbers
Fixpoint Pcompare (x y:positive) (r:comparison) {struct y} : comparison :=
match x, y with
| xI x', xI y' => Pcompare x' y' r
| xI x', xO y' => Pcompare x' y' Gt
| xI x', xH => Gt
| xO x', xI y' => Pcompare x' y' Lt
| xO x', xO y' => Pcompare x' y' r
| xO x', xH => Gt
| xH, xI y' => Lt
| xH, xO y' => Lt
| xH, xH => r
end.
Infix "?=" := Pcompare (at level 70, no associativity) : positive_scope.
Miscellaneous properties of binary positive numbers
Lemma ZL11 : forall p:positive, p = xH \/ p <> xH.
Proof.
intros x; case x; intros; (left; reflexivity) || (right; discriminate).
Qed.
Properties of successor on binary positive numbers
Specification of
xI
in term of Psucc
and xO
Lemma xI_succ_xO : forall p:positive, xI p = Psucc (xO p).
Proof.
reflexivity.
Qed.
Lemma Psucc_discr : forall p:positive, p <> Psucc p.
Proof.
intro x; destruct x as [p| p| ]; discriminate.
Qed.
Successor and double
Lemma Psucc_o_double_minus_one_eq_xO :
forall p:positive, Psucc (Pdouble_minus_one p) = xO p.
Proof.
intro x; induction x as [x IHx| x| ]; simpl in |- *; try rewrite IHx;
reflexivity.
Qed.
Lemma Pdouble_minus_one_o_succ_eq_xI :
forall p:positive, Pdouble_minus_one (Psucc p) = xI p.
Proof.
intro x; induction x as [x IHx| x| ]; simpl in |- *; try rewrite IHx;
reflexivity.
Qed.
Lemma xO_succ_permute :
forall p:positive, xO (Psucc p) = Psucc (Psucc (xO p)).
Proof.
intro y; induction y as [y Hrecy| y Hrecy| ]; simpl in |- *; auto.
Qed.
Lemma double_moins_un_xO_discr :
forall p:positive, Pdouble_minus_one p <> xO p.
Proof.
intro x; destruct x as [p| p| ]; discriminate.
Qed.
Successor and predecessor
Lemma Psucc_not_one : forall p:positive, Psucc p <> xH.
Proof.
intro x; destruct x as [x| x| ]; discriminate.
Qed.
Lemma Ppred_succ : forall p:positive, Ppred (Psucc p) = p.
Proof.
intro x; destruct x as [p| p| ]; [ idtac | idtac | simpl in |- *; auto ];
(induction p as [p IHp| | ]; [ idtac | reflexivity | reflexivity ]);
simpl in |- *; simpl in IHp; try rewrite <- IHp; reflexivity.
Qed.
Lemma Psucc_pred : forall p:positive, p = xH \/ Psucc (Ppred p) = p.
Proof.
intro x; induction x as [x Hrecx| x Hrecx| ];
[ simpl in |- *; auto
| simpl in |- *; intros; right; apply Psucc_o_double_minus_one_eq_xO
| auto ].
Qed.
Injectivity of successor
Lemma Psucc_inj : forall p q:positive, Psucc p = Psucc q -> p = q.
Proof.
intro x; induction x; intro y; destruct y as [y| y| ]; simpl in |- *; intro H;
discriminate H || (try (injection H; clear H; intro H)).
rewrite (IHx y H); reflexivity.
absurd (Psucc x = xH); [ apply Psucc_not_one | assumption ].
apply f_equal with (1 := H); assumption.
absurd (Psucc y = xH);
[ apply Psucc_not_one | symmetry in |- *; assumption ].
reflexivity.
Qed.
Properties of addition on binary positive numbers
Specification of
Psucc
in term of Pplus
Lemma Pplus_one_succ_r : forall p:positive, Psucc p = p + xH.
Proof.
intro q; destruct q as [p| p| ]; reflexivity.
Qed.
Lemma Pplus_one_succ_l : forall p:positive, Psucc p = xH + p.
Proof.
intro q; destruct q as [p| p| ]; reflexivity.
Qed.
Specification of
Pplus_carry
Theorem Pplus_carry_spec :
forall p q:positive, Pplus_carry p q = Psucc (p + q).
Proof.
intro x; induction x as [p IHp| p IHp| ]; intro y;
[ destruct y as [p0| p0| ]
| destruct y as [p0| p0| ]
| destruct y as [p| p| ] ]; simpl in |- *; auto; rewrite IHp;
auto.
Qed.
Commutativity
Theorem Pplus_comm : forall p q:positive, p + q = q + p.
Proof.
intro x; induction x as [p IHp| p IHp| ]; intro y;
[ destruct y as [p0| p0| ]
| destruct y as [p0| p0| ]
| destruct y as [p| p| ] ]; simpl in |- *; auto;
try do 2 rewrite Pplus_carry_spec; rewrite IHp; auto.
Qed.
Permutation of
Pplus
and Psucc
Theorem Pplus_succ_permute_r :
forall p q:positive, p + Psucc q = Psucc (p + q).
Proof.
intro x; induction x as [p IHp| p IHp| ]; intro y;
[ destruct y as [p0| p0| ]
| destruct y as [p0| p0| ]
| destruct y as [p| p| ] ]; simpl in |- *; auto;
[ rewrite Pplus_carry_spec; rewrite IHp; auto
| rewrite Pplus_carry_spec; auto
| destruct p; simpl in |- *; auto
| rewrite IHp; auto
| destruct p; simpl in |- *; auto ].
Qed.
Theorem Pplus_succ_permute_l :
forall p q:positive, Psucc p + q = Psucc (p + q).
Proof.
intros x y; rewrite Pplus_comm; rewrite Pplus_comm with (p := x);
apply Pplus_succ_permute_r.
Qed.
Theorem Pplus_carry_pred_eq_plus :
forall p q:positive, q <> xH -> Pplus_carry p (Ppred q) = p + q.
Proof.
intros q z H; elim (Psucc_pred z);
[ intro; absurd (z = xH); auto
| intros E; pattern z at 2 in |- *; rewrite <- E;
rewrite Pplus_succ_permute_r; rewrite Pplus_carry_spec;
trivial ].
Qed.
No neutral for addition on strictly positive numbers
Lemma Pplus_no_neutral : forall p q:positive, q + p <> p.
Proof.
intro x; induction x; intro y; destruct y as [y| y| ]; simpl in |- *; intro H;
discriminate H || injection H; clear H; intro H; apply (IHx y H).
Qed.
Lemma Pplus_carry_no_neutral :
forall p q:positive, Pplus_carry q p <> Psucc p.
Proof.
intros x y H; absurd (y + x = x);
[ apply Pplus_no_neutral
| apply Psucc_inj; rewrite <- Pplus_carry_spec; assumption ].
Qed.
Simplification
Lemma Pplus_carry_plus :
forall p q r s:positive, Pplus_carry p r = Pplus_carry q s -> p + r = q + s.
Proof.
intros x y z t H; apply Psucc_inj; do 2 rewrite <- Pplus_carry_spec;
assumption.
Qed.
Lemma Pplus_reg_r : forall p q r:positive, p + r = q + r -> p = q.
Proof.
intros x y z; generalize x y; clear x y.
induction z as [z| z| ].
destruct x as [x| x| ]; intro y; destruct y as [y| y| ]; simpl in |- *;
intro H; discriminate H || (try (injection H; clear H; intro H)).
rewrite IHz with (1 := Pplus_carry_plus _ _ _ _ H); reflexivity.
absurd (Pplus_carry x z = Psucc z);
[ apply Pplus_carry_no_neutral | assumption ].
rewrite IHz with (1 := H); reflexivity.
symmetry in H; absurd (Pplus_carry y z = Psucc z);
[ apply Pplus_carry_no_neutral | assumption ].
reflexivity.
destruct x as [x| x| ]; intro y; destruct y as [y| y| ]; simpl in |- *;
intro H; discriminate H || (try (injection H; clear H; intro H)).
rewrite IHz with (1 := H); reflexivity.
absurd (x + z = z); [ apply Pplus_no_neutral | assumption ].
rewrite IHz with (1 := H); reflexivity.
symmetry in H; absurd (y + z = z);
[ apply Pplus_no_neutral | assumption ].
reflexivity.
intros H x y; apply Psucc_inj; do 2 rewrite Pplus_one_succ_r; assumption.
Qed.
Lemma Pplus_reg_l : forall p q r:positive, p + q = p + r -> q = r.
Proof.
intros x y z H; apply Pplus_reg_r with (r := x);
rewrite Pplus_comm with (p := z); rewrite Pplus_comm with (p := y);
assumption.
Qed.
Lemma Pplus_carry_reg_r :
forall p q r:positive, Pplus_carry p r = Pplus_carry q r -> p = q.
Proof.
intros x y z H; apply Pplus_reg_r with (r := z); apply Pplus_carry_plus;
assumption.
Qed.
Lemma Pplus_carry_reg_l :
forall p q r:positive, Pplus_carry p q = Pplus_carry p r -> q = r.
Proof.
intros x y z H; apply Pplus_reg_r with (r := x);
rewrite Pplus_comm with (p := z); rewrite Pplus_comm with (p := y);
apply Pplus_carry_plus; assumption.
Qed.
Addition on positive is associative
Theorem Pplus_assoc : forall p q r:positive, p + (q + r) = p + q + r.
Proof.
intros x y; generalize x; clear x.
induction y as [y| y| ]; intro x.
destruct x as [x| x| ]; intro z; destruct z as [z| z| ]; simpl in |- *;
repeat rewrite Pplus_carry_spec; repeat rewrite Pplus_succ_permute_r;
repeat rewrite Pplus_succ_permute_l;
reflexivity || (repeat apply f_equal with (A := positive));
apply IHy.
destruct x as [x| x| ]; intro z; destruct z as [z| z| ]; simpl in |- *;
repeat rewrite Pplus_carry_spec; repeat rewrite Pplus_succ_permute_r;
repeat rewrite Pplus_succ_permute_l;
reflexivity || (repeat apply f_equal with (A := positive));
apply IHy.
intro z; rewrite Pplus_comm with (p := xH);
do 2 rewrite <- Pplus_one_succ_r; rewrite Pplus_succ_permute_l;
rewrite Pplus_succ_permute_r; reflexivity.
Qed.
Commutation of addition with the double of a positive number
Lemma Pplus_xI_double_minus_one :
forall p q:positive, xO (p + q) = xI p + Pdouble_minus_one q.
Proof.
intros; change (xI p) with (xO p + xH) in |- *.
rewrite <- Pplus_assoc; rewrite <- Pplus_one_succ_l;
rewrite Psucc_o_double_minus_one_eq_xO.
reflexivity.
Qed.
Lemma Pplus_xO_double_minus_one :
forall p q:positive, Pdouble_minus_one (p + q) = xO p + Pdouble_minus_one q.
Proof.
induction p as [p IHp| p IHp| ]; destruct q as [q| q| ]; simpl in |- *;
try rewrite Pplus_carry_spec; try rewrite Pdouble_minus_one_o_succ_eq_xI;
try rewrite IHp; try rewrite Pplus_xI_double_minus_one;
try reflexivity.
rewrite <- Psucc_o_double_minus_one_eq_xO; rewrite Pplus_one_succ_l;
reflexivity.
Qed.
Misc
Lemma Pplus_diag : forall p:positive, p + p = xO p.
Proof.
intro x; induction x; simpl in |- *; try rewrite Pplus_carry_spec;
try rewrite IHx; reflexivity.
Qed.
Peano induction on binary positive positive numbers
Fixpoint plus_iter (x y:positive) {struct x} : positive :=
match x with
| xH => Psucc y
| xO x => plus_iter x (plus_iter x y)
| xI x => plus_iter x (plus_iter x (Psucc y))
end.
Lemma plus_iter_eq_plus : forall p q:positive, plus_iter p q = p + q.
Proof.
intro x; induction x as [p IHp| p IHp| ]; intro y;
[ destruct y as [p0| p0| ]
| destruct y as [p0| p0| ]
| destruct y as [p| p| ] ]; simpl in |- *; reflexivity || (do 2 rewrite IHp);
rewrite Pplus_assoc; rewrite Pplus_diag; try reflexivity.
rewrite Pplus_carry_spec; rewrite <- Pplus_succ_permute_r; reflexivity.
rewrite Pplus_one_succ_r; reflexivity.
Qed.
Lemma plus_iter_xO : forall p:positive, plus_iter p p = xO p.
Proof.
intro; rewrite <- Pplus_diag; apply plus_iter_eq_plus.
Qed.
Lemma plus_iter_xI : forall p:positive, Psucc (plus_iter p p) = xI p.
Proof.
intro; rewrite xI_succ_xO; rewrite <- Pplus_diag;
apply (f_equal (A:=positive)); apply plus_iter_eq_plus.
Qed.
Lemma iterate_add :
forall P:positive -> Type,
(forall n:positive, P n -> P (Psucc n)) ->
forall p q:positive, P q -> P (plus_iter p q).
Proof.
intros P H; induction p; simpl in |- *; intros.
apply IHp; apply IHp; apply H; assumption.
apply IHp; apply IHp; assumption.
apply H; assumption.
Defined.
Peano induction
Theorem Pind :
forall P:positive -> Prop,
P xH -> (forall n:positive, P n -> P (Psucc n)) -> forall p:positive, P p.
Proof.
intros P H1 Hsucc n; induction n.
rewrite <- plus_iter_xI; apply Hsucc; apply iterate_add; assumption.
rewrite <- plus_iter_xO; apply iterate_add; assumption.
assumption.
Qed.
Peano recursion
Definition Prec (A:Set) (a:A) (f:positive -> A -> A) :
positive -> A :=
(fix Prec (p:positive) : A :=
match p with
| xH => a
| xO p => iterate_add (fun _ => A) f p p (Prec p)
| xI p => f (plus_iter p p) (iterate_add (fun _ => A) f p p (Prec p))
end).
Peano case analysis
Theorem Pcase :
forall P:positive -> Prop,
P xH -> (forall n:positive, P (Psucc n)) -> forall p:positive, P p.
Proof.
intros; apply Pind; auto.
Qed.
Properties of multiplication on binary positive numbers
One is right neutral for multiplication
Lemma Pmult_1_r : forall p:positive, p * xH = p.
Proof.
intro x; induction x; simpl in |- *.
rewrite IHx; reflexivity.
rewrite IHx; reflexivity.
reflexivity.
Qed.
Right reduction properties for multiplication
Lemma Pmult_xO_permute_r : forall p q:positive, p * xO q = xO (p * q).
Proof.
intros x y; induction x; simpl in |- *.
rewrite IHx; reflexivity.
rewrite IHx; reflexivity.
reflexivity.
Qed.
Lemma Pmult_xI_permute_r : forall p q:positive, p * xI q = p + xO (p * q).
Proof.
intros x y; induction x; simpl in |- *.
rewrite IHx; do 2 rewrite Pplus_assoc; rewrite Pplus_comm with (p := y);
reflexivity.
rewrite IHx; reflexivity.
reflexivity.
Qed.
Commutativity of multiplication
Theorem Pmult_comm : forall p q:positive, p * q = q * p.
Proof.
intros x y; induction y; simpl in |- *.
rewrite <- IHy; apply Pmult_xI_permute_r.
rewrite <- IHy; apply Pmult_xO_permute_r.
apply Pmult_1_r.
Qed.
Distributivity of multiplication over addition
Theorem Pmult_plus_distr_l :
forall p q r:positive, p * (q + r) = p * q + p * r.
Proof.
intros x y z; induction x; simpl in |- *.
rewrite IHx; rewrite <- Pplus_assoc with (q := xO (x * y));
rewrite Pplus_assoc with (p := xO (x * y));
rewrite Pplus_comm with (p := xO (x * y));
rewrite <- Pplus_assoc with (q := xO (x * y));
rewrite Pplus_assoc with (q := z); reflexivity.
rewrite IHx; reflexivity.
reflexivity.
Qed.
Theorem Pmult_plus_distr_r :
forall p q r:positive, (p + q) * r = p * r + q * r.
Proof.
intros x y z; do 3 rewrite Pmult_comm with (q := z); apply Pmult_plus_distr_l.
Qed.
Associativity of multiplication
Theorem Pmult_assoc : forall p q r:positive, p * (q * r) = p * q * r.
Proof.
intro x; induction x as [x| x| ]; simpl in |- *; intros y z.
rewrite IHx; rewrite Pmult_plus_distr_r; reflexivity.
rewrite IHx; reflexivity.
reflexivity.
Qed.
Parity properties of multiplication
Lemma Pmult_xI_mult_xO_discr : forall p q r:positive, xI p * r <> xO q * r.
Proof.
intros x y z; induction z as [| z IHz| ]; try discriminate.
intro H; apply IHz; clear IHz.
do 2 rewrite Pmult_xO_permute_r in H.
injection H; clear H; intro H; exact H.
Qed.
Lemma Pmult_xO_discr : forall p q:positive, xO p * q <> q.
Proof.
intros x y; induction y; try discriminate.
rewrite Pmult_xO_permute_r; injection; assumption.
Qed.
Simplification properties of multiplication
Theorem Pmult_reg_r : forall p q r:positive, p * r = q * r -> p = q.
Proof.
intro x; induction x as [p IHp| p IHp| ]; intro y; destruct y as [q| q| ];
intros z H; reflexivity || apply (f_equal (A:=positive)) || apply False_ind.
simpl in H; apply IHp with (xO z); simpl in |- *;
do 2 rewrite Pmult_xO_permute_r; apply Pplus_reg_l with (1 := H).
apply Pmult_xI_mult_xO_discr with (1 := H).
simpl in H; rewrite Pplus_comm in H; apply Pplus_no_neutral with (1 := H).
symmetry in H; apply Pmult_xI_mult_xO_discr with (1 := H).
apply IHp with (xO z); simpl in |- *; do 2 rewrite Pmult_xO_permute_r;
assumption.
apply Pmult_xO_discr with (1 := H).
simpl in H; symmetry in H; rewrite Pplus_comm in H;
apply Pplus_no_neutral with (1 := H).
symmetry in H; apply Pmult_xO_discr with (1 := H).
Qed.
Theorem Pmult_reg_l : forall p q r:positive, r * p = r * q -> p = q.
Proof.
intros x y z H; apply Pmult_reg_r with (r := z).
rewrite Pmult_comm with (p := x); rewrite Pmult_comm with (p := y);
assumption.
Qed.
Inversion of multiplication
Lemma Pmult_1_inversion_l : forall p q:positive, p * q = xH -> p = xH.
Proof.
intros x y; destruct x as [p| p| ]; simpl in |- *.
destruct y as [p0| p0| ]; intro; discriminate.
intro; discriminate.
reflexivity.
Qed.
Properties of comparison on binary positive numbers
Theorem Pcompare_not_Eq :
forall p q:positive, (p ?= q) Gt <> Eq /\ (p ?= q) Lt <> Eq.
Proof.
intro x; induction x as [p IHp| p IHp| ]; intro y; destruct y as [q| q| ];
split; simpl in |- *; auto; discriminate || (elim (IHp q); auto).
Qed.
Theorem Pcompare_Eq_eq : forall p q:positive, (p ?= q) Eq = Eq -> p = q.
Proof.
intro x; induction x as [p IHp| p IHp| ]; intro y; destruct y as [q| q| ];
simpl in |- *; auto; intro H;
[ rewrite (IHp q); trivial
| absurd ((p ?= q) Gt = Eq);
[ elim (Pcompare_not_Eq p q); auto | assumption ]
| discriminate H
| absurd ((p ?= q) Lt = Eq);
[ elim (Pcompare_not_Eq p q); auto | assumption ]
| rewrite (IHp q); auto
| discriminate H
| discriminate H
| discriminate H ].
Qed.
Lemma Pcompare_Gt_Lt :
forall p q:positive, (p ?= q) Gt = Lt -> (p ?= q) Eq = Lt.
Proof.
intro x; induction x as [x Hrecx| x Hrecx| ]; intro y;
[ induction y as [y Hrecy| y Hrecy| ]
| induction y as [y Hrecy| y Hrecy| ]
| induction y as [y Hrecy| y Hrecy| ] ]; simpl in |- *;
auto; discriminate || intros H; discriminate H.
Qed.
Lemma Pcompare_Lt_Gt :
forall p q:positive, (p ?= q) Lt = Gt -> (p ?= q) Eq = Gt.
Proof.
intro x; induction x as [x Hrecx| x Hrecx| ]; intro y;
[ induction y as [y Hrecy| y Hrecy| ]
| induction y as [y Hrecy| y Hrecy| ]
| induction y as [y Hrecy| y Hrecy| ] ]; simpl in |- *;
auto; discriminate || intros H; discriminate H.
Qed.
Lemma Pcompare_Lt_Lt :
forall p q:positive, (p ?= q) Lt = Lt -> (p ?= q) Eq = Lt \/ p = q.
Proof.
intro x; induction x as [p IHp| p IHp| ]; intro y; destruct y as [q| q| ];
simpl in |- *; auto; try discriminate; intro H2; elim (IHp q H2);
auto; intros E; rewrite E; auto.
Qed.
Lemma Pcompare_Gt_Gt :
forall p q:positive, (p ?= q) Gt = Gt -> (p ?= q) Eq = Gt \/ p = q.
Proof.
intro x; induction x as [p IHp| p IHp| ]; intro y; destruct y as [q| q| ];
simpl in |- *; auto; try discriminate; intro H2; elim (IHp q H2);
auto; intros E; rewrite E; auto.
Qed.
Lemma Dcompare : forall r:comparison, r = Eq \/ r = Lt \/ r = Gt.
Proof.
simple induction r; auto.
Qed.
Ltac ElimPcompare c1 c2 :=
elim (Dcompare ((c1 ?= c2) Eq));
[ idtac | let x := fresh "H" in
(intro x; case x; clear x) ].
Theorem Pcompare_refl : forall p:positive, (p ?= p) Eq = Eq.
intro x; induction x as [x Hrecx| x Hrecx| ]; auto.
Qed.
Lemma Pcompare_antisym :
forall (p q:positive) (r:comparison),
CompOpp ((p ?= q) r) = (q ?= p) (CompOpp r).
Proof.
intro x; induction x as [p IHp| p IHp| ]; intro y;
[ destruct y as [p0| p0| ]
| destruct y as [p0| p0| ]
| destruct y as [p| p| ] ]; intro r;
reflexivity ||
(symmetry in |- *; assumption) || discriminate H || simpl in |- *;
apply IHp || (try rewrite IHp); try reflexivity.
Qed.
Lemma ZC1 : forall p q:positive, (p ?= q) Eq = Gt -> (q ?= p) Eq = Lt.
Proof.
intros; change Eq with (CompOpp Eq) in |- *.
rewrite <- Pcompare_antisym; rewrite H; reflexivity.
Qed.
Lemma ZC2 : forall p q:positive, (p ?= q) Eq = Lt -> (q ?= p) Eq = Gt.
Proof.
intros; change Eq with (CompOpp Eq) in |- *.
rewrite <- Pcompare_antisym; rewrite H; reflexivity.
Qed.
Lemma ZC3 : forall p q:positive, (p ?= q) Eq = Eq -> (q ?= p) Eq = Eq.
Proof.
intros; change Eq with (CompOpp Eq) in |- *.
rewrite <- Pcompare_antisym; rewrite H; reflexivity.
Qed.
Lemma ZC4 : forall p q:positive, (p ?= q) Eq = CompOpp ((q ?= p) Eq).
Proof.
intros; change Eq at 1 with (CompOpp Eq) in |- *.
symmetry in |- *; apply Pcompare_antisym.
Qed.
Properties of subtraction on binary positive numbers
Lemma double_eq_zero_inversion :
forall p:positive_mask, Pdouble_mask p = IsNul -> p = IsNul.
Proof.
destruct p; simpl in |- *; [ trivial | discriminate 1 | discriminate 1 ].
Qed.
Lemma double_plus_one_zero_discr :
forall p:positive_mask, Pdouble_plus_one_mask p <> IsNul.
Proof.
simple induction p; intros; discriminate.
Qed.
Lemma double_plus_one_eq_one_inversion :
forall p:positive_mask, Pdouble_plus_one_mask p = IsPos xH -> p = IsNul.
Proof.
destruct p; simpl in |- *; [ trivial | discriminate 1 | discriminate 1 ].
Qed.
Lemma double_eq_one_discr :
forall p:positive_mask, Pdouble_mask p <> IsPos xH.
Proof.
simple induction p; intros; discriminate.
Qed.
Theorem Pminus_mask_diag : forall p:positive, Pminus_mask p p = IsNul.
Proof.
intro x; induction x as [p IHp| p IHp| ];
[ simpl in |- *; rewrite IHp; simpl in |- *; trivial
| simpl in |- *; rewrite IHp; auto
| auto ].
Qed.
Lemma ZL10 :
forall p q:positive,
Pminus_mask p q = IsPos xH -> Pminus_mask_carry p q = IsNul.
Proof.
intro x; induction x as [p| p| ]; intro y; destruct y as [q| q| ];
simpl in |- *; intro H; try discriminate H;
[ absurd (Pdouble_mask (Pminus_mask p q) = IsPos xH);
[ apply double_eq_one_discr | assumption ]
| assert (Heq : Pminus_mask p q = IsNul);
[ apply double_plus_one_eq_one_inversion; assumption
| rewrite Heq; reflexivity ]
| assert (Heq : Pminus_mask_carry p q = IsNul);
[ apply double_plus_one_eq_one_inversion; assumption
| rewrite Heq; reflexivity ]
| absurd (Pdouble_mask (Pminus_mask p q) = IsPos xH);
[ apply double_eq_one_discr | assumption ]
| destruct p; simpl in |- *;
[ discriminate H | discriminate H | reflexivity ] ].
Qed.
Properties of subtraction valid only for x>y
Lemma Pminus_mask_Gt :
forall p q:positive,
(p ?= q) Eq = Gt ->
exists h : positive,
Pminus_mask p q = IsPos h /\
q + h = p /\ (h = xH \/ Pminus_mask_carry p q = IsPos (Ppred h)).
Proof.
intro x; induction x as [p| p| ]; intro y; destruct y as [q| q| ];
simpl in |- *; intro H; try discriminate H.
destruct (IHp q H) as [z [H4 [H6 H7]]]; exists (xO z); split.
rewrite H4; reflexivity.
split.
simpl in |- *; rewrite H6; reflexivity.
right; clear H6; destruct (ZL11 z) as [H8| H8];
[ rewrite H8; rewrite H8 in H4; rewrite ZL10;
[ reflexivity | assumption ]
| clear H4; destruct H7 as [H9| H9];
[ absurd (z = xH); assumption
| rewrite H9; clear H9; destruct z as [p0| p0| ];
[ reflexivity | reflexivity | absurd (xH = xH); trivial ] ] ].
case Pcompare_Gt_Gt with (1 := H);
[ intros H3; elim (IHp q H3); intros z H4; exists (xI z); elim H4;
intros H5 H6; elim H6; intros H7 H8; split;
[ simpl in |- *; rewrite H5; auto
| split;
[ simpl in |- *; rewrite H7; trivial
| right;
change (Pdouble_mask (Pminus_mask p q) = IsPos (Ppred (xI z)))
in |- *; rewrite H5; auto ] ]
| intros H3; exists xH; rewrite H3; split;
[ simpl in |- *; rewrite Pminus_mask_diag; auto | split; auto ] ].
exists (xO p); auto.
destruct (IHp q) as [z [H4 [H6 H7]]].
apply Pcompare_Lt_Gt; assumption.
destruct (ZL11 z) as [vZ| ];
[ exists xH; split;
[ rewrite ZL10; [ reflexivity | rewrite vZ in H4; assumption ]
| split;
[ simpl in |- *; rewrite Pplus_one_succ_r; rewrite <- vZ;
rewrite H6; trivial
| auto ] ]
| exists (xI (Ppred z)); destruct H7 as [| H8];
[ absurd (z = xH); assumption
| split;
[ rewrite H8; trivial
| split;
[ simpl in |- *; rewrite Pplus_carry_pred_eq_plus;
[ rewrite H6; trivial | assumption ]
| right; rewrite H8; reflexivity ] ] ] ].
destruct (IHp q H) as [z [H4 [H6 H7]]].
exists (xO z); split;
[ rewrite H4; auto
| split;
[ simpl in |- *; rewrite H6; reflexivity
| right;
change
(Pdouble_plus_one_mask (Pminus_mask_carry p q) =
IsPos (Pdouble_minus_one z)) in |- *;
destruct (ZL11 z) as [H8| H8];
[ rewrite H8; simpl in |- *;
assert (H9 : Pminus_mask_carry p q = IsNul);
[ apply ZL10; rewrite <- H8; assumption
| rewrite H9; reflexivity ]
| destruct H7 as [H9| H9];
[ absurd (z = xH); auto
| rewrite H9; destruct z as [p0| p0| ]; simpl in |- *;
[ reflexivity
| reflexivity
| absurd (xH = xH); [ assumption | reflexivity ] ] ] ] ] ].
exists (Pdouble_minus_one p); split;
[ reflexivity
| clear IHp; split;
[ destruct p; simpl in |- *;
[ reflexivity
| rewrite Psucc_o_double_minus_one_eq_xO; reflexivity
| reflexivity ]
| destruct p; [ right | right | left ]; reflexivity ] ].
Qed.
Theorem Pplus_minus :
forall p q:positive, (p ?= q) Eq = Gt -> q + (p - q) = p.
Proof.
intros x y H; elim Pminus_mask_Gt with (1 := H); intros z H1; elim H1;
intros H2 H3; elim H3; intros H4 H5; unfold Pminus in |- *;
rewrite H2; exact H4.
Qed.