Library Coq.Reals.R_sqrt
Require Import Rbase.
Require Import Rfunctions.
Require Import Rsqrt_def. Open Local Scope R_scope.
Continuous extension of Rsqrt on R
Definition sqrt (x:R) : R :=
match Rcase_abs x with
| left _ => 0
| right a => Rsqrt (mknonnegreal x (Rge_le _ _ a))
end.
Lemma sqrt_positivity : forall x:R, 0 <= x -> 0 <= sqrt x.
Proof.
intros.
unfold sqrt in |- *.
case (Rcase_abs x); intro.
elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ r H)).
apply Rsqrt_positivity.
Qed.
Lemma sqrt_sqrt : forall x:R, 0 <= x -> sqrt x * sqrt x = x.
Proof.
intros.
unfold sqrt in |- *.
case (Rcase_abs x); intro.
elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ r H)).
rewrite Rsqrt_Rsqrt; reflexivity.
Qed.
Lemma sqrt_0 : sqrt 0 = 0.
Proof.
apply Rsqr_eq_0; unfold Rsqr in |- *; apply sqrt_sqrt; right; reflexivity.
Qed.
Lemma sqrt_1 : sqrt 1 = 1.
Proof.
apply (Rsqr_inj (sqrt 1) 1);
[ apply sqrt_positivity; left
| left
| unfold Rsqr in |- *; rewrite sqrt_sqrt; [ ring | left ] ];
apply Rlt_0_1.
Qed.
Lemma sqrt_eq_0 : forall x:R, 0 <= x -> sqrt x = 0 -> x = 0.
Proof.
intros; cut (Rsqr (sqrt x) = 0).
intro; unfold Rsqr in H1; rewrite sqrt_sqrt in H1; assumption.
rewrite H0; apply Rsqr_0.
Qed.
Lemma sqrt_lem_0 : forall x y:R, 0 <= x -> 0 <= y -> sqrt x = y -> y * y = x.
Proof.
intros; rewrite <- H1; apply (sqrt_sqrt x H).
Qed.
Lemma sqrt_lem_1 : forall x y:R, 0 <= x -> 0 <= y -> y * y = x -> sqrt x = y.
Proof.
intros; apply Rsqr_inj;
[ apply (sqrt_positivity x H)
| assumption
| unfold Rsqr in |- *; rewrite H1; apply (sqrt_sqrt x H) ].
Qed.
Lemma sqrt_def : forall x:R, 0 <= x -> sqrt x * sqrt x = x.
Proof.
intros; apply (sqrt_sqrt x H).
Qed.
Lemma sqrt_square : forall x:R, 0 <= x -> sqrt (x * x) = x.
Proof.
intros;
apply
(Rsqr_inj (sqrt (Rsqr x)) x (sqrt_positivity (Rsqr x) (Rle_0_sqr x)) H);
unfold Rsqr in |- *; apply (sqrt_sqrt (Rsqr x) (Rle_0_sqr x)).
Qed.
Lemma sqrt_Rsqr : forall x:R, 0 <= x -> sqrt (Rsqr x) = x.
Proof.
intros; unfold Rsqr in |- *; apply sqrt_square; assumption.
Qed.
Lemma sqrt_Rsqr_abs : forall x:R, sqrt (Rsqr x) = Rabs x.
Proof.
intro x; rewrite Rsqr_abs; apply sqrt_Rsqr; apply Rabs_pos.
Qed.
Lemma Rsqr_sqrt : forall x:R, 0 <= x -> Rsqr (sqrt x) = x.
Proof.
intros x H1; unfold Rsqr in |- *; apply (sqrt_sqrt x H1).
Qed.
Lemma sqrt_mult :
forall x y:R, 0 <= x -> 0 <= y -> sqrt (x * y) = sqrt x * sqrt y.
Proof.
intros x y H1 H2;
apply
(Rsqr_inj (sqrt (x * y)) (sqrt x * sqrt y)
(sqrt_positivity (x * y) (Rmult_le_pos x y H1 H2))
(Rmult_le_pos (sqrt x) (sqrt y) (sqrt_positivity x H1)
(sqrt_positivity y H2))); rewrite Rsqr_mult;
repeat rewrite Rsqr_sqrt;
[ ring | assumption | assumption | apply (Rmult_le_pos x y H1 H2) ].
Qed.
Lemma sqrt_lt_R0 : forall x:R, 0 < x -> 0 < sqrt x.
Proof.
intros x H1; apply Rsqr_incrst_0;
[ rewrite Rsqr_0; rewrite Rsqr_sqrt; [ assumption | left; assumption ]
| right; reflexivity
| apply (sqrt_positivity x (Rlt_le 0 x H1)) ].
Qed.
Lemma sqrt_div :
forall x y:R, 0 <= x -> 0 < y -> sqrt (x / y) = sqrt x / sqrt y.
Proof.
intros x y H1 H2; apply Rsqr_inj;
[ apply sqrt_positivity; apply (Rmult_le_pos x (/ y));
[ assumption
| generalize (Rinv_0_lt_compat y H2); clear H2; intro H2; left;
assumption ]
| apply (Rmult_le_pos (sqrt x) (/ sqrt y));
[ apply (sqrt_positivity x H1)
| generalize (sqrt_lt_R0 y H2); clear H2; intro H2;
generalize (Rinv_0_lt_compat (sqrt y) H2); clear H2;
intro H2; left; assumption ]
| rewrite Rsqr_div; repeat rewrite Rsqr_sqrt;
[ reflexivity
| left; assumption
| assumption
| generalize (Rinv_0_lt_compat y H2); intro H3;
generalize (Rlt_le 0 (/ y) H3); intro H4;
apply (Rmult_le_pos x (/ y) H1 H4)
| red in |- *; intro H3; generalize (Rlt_le 0 y H2); intro H4;
generalize (sqrt_eq_0 y H4 H3); intro H5; rewrite H5 in H2;
elim (Rlt_irrefl 0 H2) ] ].
Qed.
Lemma sqrt_lt_0 : forall x y:R, 0 <= x -> 0 <= y -> sqrt x < sqrt y -> x < y.
Proof.
intros x y H1 H2 H3;
generalize
(Rsqr_incrst_1 (sqrt x) (sqrt y) H3 (sqrt_positivity x H1)
(sqrt_positivity y H2)); intro H4; rewrite (Rsqr_sqrt x H1) in H4;
rewrite (Rsqr_sqrt y H2) in H4; assumption.
Qed.
Lemma sqrt_lt_1 : forall x y:R, 0 <= x -> 0 <= y -> x < y -> sqrt x < sqrt y.
Proof.
intros x y H1 H2 H3; apply Rsqr_incrst_0;
[ rewrite (Rsqr_sqrt x H1); rewrite (Rsqr_sqrt y H2); assumption
| apply (sqrt_positivity x H1)
| apply (sqrt_positivity y H2) ].
Qed.
Lemma sqrt_le_0 :
forall x y:R, 0 <= x -> 0 <= y -> sqrt x <= sqrt y -> x <= y.
Proof.
intros x y H1 H2 H3;
generalize
(Rsqr_incr_1 (sqrt x) (sqrt y) H3 (sqrt_positivity x H1)
(sqrt_positivity y H2)); intro H4; rewrite (Rsqr_sqrt x H1) in H4;
rewrite (Rsqr_sqrt y H2) in H4; assumption.
Qed.
Lemma sqrt_le_1 :
forall x y:R, 0 <= x -> 0 <= y -> x <= y -> sqrt x <= sqrt y.
Proof.
intros x y H1 H2 H3; apply Rsqr_incr_0;
[ rewrite (Rsqr_sqrt x H1); rewrite (Rsqr_sqrt y H2); assumption
| apply (sqrt_positivity x H1)
| apply (sqrt_positivity y H2) ].
Qed.
Lemma sqrt_inj : forall x y:R, 0 <= x -> 0 <= y -> sqrt x = sqrt y -> x = y.
Proof.
intros; cut (Rsqr (sqrt x) = Rsqr (sqrt y)).
intro; rewrite (Rsqr_sqrt x H) in H2; rewrite (Rsqr_sqrt y H0) in H2;
assumption.
rewrite H1; reflexivity.
Qed.
Lemma sqrt_less : forall x:R, 0 <= x -> 1 < x -> sqrt x < x.
Proof.
intros x H1 H2; generalize (sqrt_lt_1 1 x (Rlt_le 0 1 Rlt_0_1) H1 H2);
intro H3; rewrite sqrt_1 in H3; generalize (Rmult_ne (sqrt x));
intro H4; elim H4; intros H5 H6; rewrite <- H5; pattern x at 2 in |- *;
rewrite <- (sqrt_def x H1);
apply
(Rmult_lt_compat_l (sqrt x) 1 (sqrt x)
(sqrt_lt_R0 x (Rlt_trans 0 1 x Rlt_0_1 H2)) H3).
Qed.
Lemma sqrt_more : forall x:R, 0 < x -> x < 1 -> x < sqrt x.
Proof.
intros x H1 H2;
generalize (sqrt_lt_1 x 1 (Rlt_le 0 x H1) (Rlt_le 0 1 Rlt_0_1) H2);
intro H3; rewrite sqrt_1 in H3; generalize (Rmult_ne (sqrt x));
intro H4; elim H4; intros H5 H6; rewrite <- H5; pattern x at 1 in |- *;
rewrite <- (sqrt_def x (Rlt_le 0 x H1));
apply (Rmult_lt_compat_l (sqrt x) (sqrt x) 1 (sqrt_lt_R0 x H1) H3).
Qed.
Lemma sqrt_cauchy :
forall a b c d:R,
a * c + b * d <= sqrt (Rsqr a + Rsqr b) * sqrt (Rsqr c + Rsqr d).
Proof.
intros a b c d; apply Rsqr_incr_0_var;
[ rewrite Rsqr_mult; repeat rewrite Rsqr_sqrt; unfold Rsqr in |- *;
[ replace ((a * c + b * d) * (a * c + b * d)) with
(a * a * c * c + b * b * d * d + 2 * a * b * c * d);
[ replace ((a * a + b * b) * (c * c + d * d)) with
(a * a * c * c + b * b * d * d + (a * a * d * d + b * b * c * c));
[ apply Rplus_le_compat_l;
replace (a * a * d * d + b * b * c * c) with
(2 * a * b * c * d +
(a * a * d * d + b * b * c * c - 2 * a * b * c * d));
[ pattern (2 * a * b * c * d) at 1 in |- *; rewrite <- Rplus_0_r;
apply Rplus_le_compat_l;
replace (a * a * d * d + b * b * c * c - 2 * a * b * c * d)
with (Rsqr (a * d - b * c));
[ apply Rle_0_sqr | unfold Rsqr in |- *; ring ]
| ring ]
| ring ]
| ring ]
| apply
(Rplus_le_le_0_compat (Rsqr c) (Rsqr d) (Rle_0_sqr c) (Rle_0_sqr d))
| apply
(Rplus_le_le_0_compat (Rsqr a) (Rsqr b) (Rle_0_sqr a) (Rle_0_sqr b)) ]
| apply Rmult_le_pos; apply sqrt_positivity; apply Rplus_le_le_0_compat;
apply Rle_0_sqr ].
Qed.
Resolution of a*X^2+b*X+c=0
Definition Delta (a:nonzeroreal) (b c:R) : R := Rsqr b - 4 * a * c.
Definition Delta_is_pos (a:nonzeroreal) (b c:R) : Prop := 0 <= Delta a b c.
Definition sol_x1 (a:nonzeroreal) (b c:R) : R :=
(- b + sqrt (Delta a b c)) / (2 * a).
Definition sol_x2 (a:nonzeroreal) (b c:R) : R :=
(- b - sqrt (Delta a b c)) / (2 * a).
Lemma Rsqr_sol_eq_0_1 :
forall (a:nonzeroreal) (b c x:R),
Delta_is_pos a b c ->
x = sol_x1 a b c \/ x = sol_x2 a b c -> a * Rsqr x + b * x + c = 0.
Proof.
intros; elim H0; intro.
unfold sol_x1 in H1; unfold Delta in H1; rewrite H1; unfold Rdiv in |- *;
repeat rewrite Rsqr_mult; rewrite Rsqr_plus; rewrite <- Rsqr_neg;
rewrite Rsqr_sqrt.
rewrite Rsqr_inv.
unfold Rsqr in |- *; repeat rewrite Rinv_mult_distr.
repeat rewrite Rmult_assoc; rewrite (Rmult_comm a).
repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; rewrite Rmult_plus_distr_r.
repeat rewrite Rmult_assoc.
pattern 2 at 2 in |- *; rewrite (Rmult_comm 2).
repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_r.
rewrite
(Rmult_plus_distr_r (- b) (sqrt (b * b - 2 * (2 * (a * c)))) (/ 2 * / a))
.
rewrite Rmult_plus_distr_l; repeat rewrite Rplus_assoc.
replace
(- b * (sqrt (b * b - 2 * (2 * (a * c))) * (/ 2 * / a)) +
(b * (- b * (/ 2 * / a)) +
(b * (sqrt (b * b - 2 * (2 * (a * c))) * (/ 2 * / a)) + c))) with
(b * (- b * (/ 2 * / a)) + c).
unfold Rminus in |- *; repeat rewrite <- Rplus_assoc.
replace (b * b + b * b) with (2 * (b * b)).
rewrite Rmult_plus_distr_r; repeat rewrite Rmult_assoc.
rewrite (Rmult_comm 2); repeat rewrite Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_r.
rewrite Ropp_mult_distr_l_reverse; repeat rewrite Rmult_assoc;
rewrite (Rmult_comm 2).
repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; rewrite (Rmult_comm (/ 2)); repeat rewrite Rmult_assoc;
rewrite (Rmult_comm 2).
repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; repeat rewrite Rmult_assoc.
rewrite (Rmult_comm a); rewrite Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; rewrite <- Rmult_opp_opp.
ring.
apply (cond_nonzero a).
discrR.
discrR.
discrR.
ring.
ring.
discrR.
apply (cond_nonzero a).
discrR.
apply (cond_nonzero a).
apply prod_neq_R0; [ discrR | apply (cond_nonzero a) ].
apply prod_neq_R0; [ discrR | apply (cond_nonzero a) ].
apply prod_neq_R0; [ discrR | apply (cond_nonzero a) ].
assumption.
unfold sol_x2 in H1; unfold Delta in H1; rewrite H1; unfold Rdiv in |- *;
repeat rewrite Rsqr_mult; rewrite Rsqr_minus; rewrite <- Rsqr_neg;
rewrite Rsqr_sqrt.
rewrite Rsqr_inv.
unfold Rsqr in |- *; repeat rewrite Rinv_mult_distr;
repeat rewrite Rmult_assoc.
rewrite (Rmult_comm a); repeat rewrite Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; unfold Rminus in |- *; rewrite Rmult_plus_distr_r.
rewrite Ropp_mult_distr_l_reverse; repeat rewrite Rmult_assoc;
pattern 2 at 2 in |- *; rewrite (Rmult_comm 2).
repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_r;
rewrite
(Rmult_plus_distr_r (- b) (- sqrt (b * b + - (2 * (2 * (a * c)))))
(/ 2 * / a)).
rewrite Rmult_plus_distr_l; repeat rewrite Rplus_assoc.
rewrite Ropp_mult_distr_l_reverse; rewrite Ropp_involutive.
replace
(b * (sqrt (b * b + - (2 * (2 * (a * c)))) * (/ 2 * / a)) +
(b * (- b * (/ 2 * / a)) +
(b * (- sqrt (b * b + - (2 * (2 * (a * c)))) * (/ 2 * / a)) + c))) with
(b * (- b * (/ 2 * / a)) + c).
repeat rewrite <- Rplus_assoc; replace (b * b + b * b) with (2 * (b * b)).
rewrite Rmult_plus_distr_r; repeat rewrite Rmult_assoc;
rewrite (Rmult_comm 2); repeat rewrite Rmult_assoc;
rewrite <- Rinv_l_sym.
rewrite Ropp_mult_distr_l_reverse; repeat rewrite Rmult_assoc.
rewrite (Rmult_comm 2); repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; rewrite (Rmult_comm (/ 2)); repeat rewrite Rmult_assoc.
rewrite (Rmult_comm 2); repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; repeat rewrite Rmult_assoc; rewrite (Rmult_comm a);
rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; rewrite <- Rmult_opp_opp; ring.
apply (cond_nonzero a).
discrR.
discrR.
discrR.
ring.
ring.
discrR.
apply (cond_nonzero a).
discrR.
discrR.
apply (cond_nonzero a).
apply prod_neq_R0; discrR || apply (cond_nonzero a).
apply prod_neq_R0; discrR || apply (cond_nonzero a).
apply prod_neq_R0; discrR || apply (cond_nonzero a).
assumption.
Qed.
Lemma Rsqr_sol_eq_0_0 :
forall (a:nonzeroreal) (b c x:R),
Delta_is_pos a b c ->
a * Rsqr x + b * x + c = 0 -> x = sol_x1 a b c \/ x = sol_x2 a b c.
Proof.
intros; rewrite (canonical_Rsqr a b c x) in H0; rewrite Rplus_comm in H0;
generalize
(Rplus_opp_r_uniq ((4 * a * c - Rsqr b) / (4 * a))
(a * Rsqr (x + b / (2 * a))) H0); cut (Rsqr b - 4 * a * c = Delta a b c).
intro;
replace (- ((4 * a * c - Rsqr b) / (4 * a))) with
((Rsqr b - 4 * a * c) / (4 * a)).
rewrite H1; intro;
generalize
(Rmult_eq_compat_l (/ a) (a * Rsqr (x + b / (2 * a)))
(Delta a b c / (4 * a)) H2);
replace (/ a * (a * Rsqr (x + b / (2 * a)))) with (Rsqr (x + b / (2 * a))).
replace (/ a * (Delta a b c / (4 * a))) with
(Rsqr (sqrt (Delta a b c) / (2 * a))).
intro;
generalize (Rsqr_eq (x + b / (2 * a)) (sqrt (Delta a b c) / (2 * a)) H3);
intro; elim H4; intro.
left; unfold sol_x1 in |- *;
generalize
(Rplus_eq_compat_l (- (b / (2 * a))) (x + b / (2 * a))
(sqrt (Delta a b c) / (2 * a)) H5);
replace (- (b / (2 * a)) + (x + b / (2 * a))) with x.
intro; rewrite H6; unfold Rdiv in |- *; ring.
ring.
right; unfold sol_x2 in |- *;
generalize
(Rplus_eq_compat_l (- (b / (2 * a))) (x + b / (2 * a))
(- (sqrt (Delta a b c) / (2 * a))) H5);
replace (- (b / (2 * a)) + (x + b / (2 * a))) with x.
intro; rewrite H6; unfold Rdiv in |- *; ring.
ring.
rewrite Rsqr_div.
rewrite Rsqr_sqrt.
unfold Rdiv in |- *.
repeat rewrite Rmult_assoc.
rewrite (Rmult_comm (/ a)).
rewrite Rmult_assoc.
rewrite <- Rinv_mult_distr.
replace (2 * (2 * a) * a) with (Rsqr (2 * a)).
reflexivity.
ring_Rsqr.
rewrite <- Rmult_assoc; apply prod_neq_R0;
[ discrR | apply (cond_nonzero a) ].
apply (cond_nonzero a).
assumption.
apply prod_neq_R0; [ discrR | apply (cond_nonzero a) ].
rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
symmetry in |- *; apply Rmult_1_l.
apply (cond_nonzero a).
unfold Rdiv in |- *; rewrite <- Ropp_mult_distr_l_reverse.
rewrite Ropp_minus_distr.
reflexivity.
reflexivity.
Qed.