Library Coq.QArith.Qcanon
Require Import Field.
Require Import QArith.
Require Import Znumtheory.
Require Import Eqdep_dec.
Qc
: A canonical representation of rational numbers.
based on the setoid representation Q
.
Record Qc : Set := Qcmake { this :> Q ; canon : Qred this = this }.
Delimit Scope Qc_scope with Qc.
Bind Scope Qc_scope with Qc.
Arguments Scope Qcmake [Q_scope].
Open Scope Qc_scope.
Lemma Qred_identity :
forall q:Q, Zgcd (Qnum q) (QDen q) = 1%Z -> Qred q = q.
Proof.
unfold Qred; intros (a,b); simpl.
generalize (Zggcd_gcd a ('b)) (Zggcd_correct_divisors a ('b)).
intros.
rewrite H1 in H; clear H1.
destruct (Zggcd a ('b)) as (g,(aa,bb)); simpl in *; subst.
destruct H0.
rewrite Zmult_1_l in H, H0.
subst; simpl; auto.
Qed.
Lemma Qred_identity2 :
forall q:Q, Qred q = q -> Zgcd (Qnum q) (QDen q) = 1%Z.
Proof.
unfold Qred; intros (a,b); simpl.
generalize (Zggcd_gcd a ('b)) (Zggcd_correct_divisors a ('b)) (Zgcd_is_pos a ('b)).
intros.
rewrite <- H; rewrite <- H in H1; clear H.
destruct (Zggcd a ('b)) as (g,(aa,bb)); simpl in *; subst.
injection H2; intros; clear H2.
destruct H0.
clear H0 H3.
destruct g as [|g|g]; destruct bb as [|bb|bb]; simpl in *; try discriminate.
f_equal.
apply Pmult_reg_r with bb.
injection H2; intros.
rewrite <- H0.
rewrite H; simpl; auto.
elim H1; auto.
Qed.
Lemma Qred_iff : forall q:Q, Qred q = q <-> Zgcd (Qnum q) (QDen q) = 1%Z.
Proof.
split; intros.
apply Qred_identity2; auto.
apply Qred_identity; auto.
Qed.
Lemma Qred_involutive : forall q:Q, Qred (Qred q) = Qred q.
Proof.
intros; apply Qred_complete.
apply Qred_correct.
Qed.
Definition Q2Qc (q:Q) : Qc := Qcmake (Qred q) (Qred_involutive q).
Arguments Scope Q2Qc [Q_scope].
Notation " !! " := Q2Qc : Qc_scope.
Lemma Qc_is_canon : forall q q' : Qc, q == q' -> q = q'.
Proof.
intros (q,proof_q) (q',proof_q').
simpl.
intros H.
assert (H0:=Qred_complete _ _ H).
assert (q = q') by congruence.
subst q'.
assert (proof_q = proof_q').
apply eq_proofs_unicity; auto; intros.
repeat decide equality.
congruence.
Qed.
Hint Resolve Qc_is_canon.
Notation " 0 " := (!!0) : Qc_scope.
Notation " 1 " := (!!1) : Qc_scope.
Definition Qcle (x y : Qc) := (x <= y)%Q.
Definition Qclt (x y : Qc) := (x < y)%Q.
Notation Qcgt := (fun x y : Qc => Qlt y x).
Notation Qcge := (fun x y : Qc => Qle y x).
Infix "<" := Qclt : Qc_scope.
Infix "<=" := Qcle : Qc_scope.
Infix ">" := Qcgt : Qc_scope.
Infix ">=" := Qcge : Qc_scope.
Notation "x <= y <= z" := (x<=y/\y<=z) : Qc_scope.
Definition Qccompare (p q : Qc) := (Qcompare p q).
Notation "p ?= q" := (Qccompare p q) : Qc_scope.
Lemma Qceq_alt : forall p q, (p = q) <-> (p ?= q) = Eq.
Proof.
unfold Qccompare.
intros; rewrite <- Qeq_alt.
split; auto.
intro H; rewrite H; auto with qarith.
Qed.
Lemma Qclt_alt : forall p q, (p<q) <-> (p?=q = Lt).
Proof.
intros; exact (Qlt_alt p q).
Qed.
Lemma Qcgt_alt : forall p q, (p>q) <-> (p?=q = Gt).
Proof.
intros; exact (Qgt_alt p q).
Qed.
Lemma Qle_alt : forall p q, (p<=q) <-> (p?=q <> Gt).
Proof.
intros; exact (Qle_alt p q).
Qed.
Lemma Qge_alt : forall p q, (p>=q) <-> (p?=q <> Lt).
Proof.
intros; exact (Qge_alt p q).
Qed.
equality on
Qc
is decidable:
Theorem Qc_eq_dec : forall x y:Qc, {x=y} + {x<>y}.
Proof.
intros.
destruct (Qeq_dec x y) as [H|H]; auto.
right; swap H; subst; auto with qarith.
Defined.
The addition, multiplication and opposite are defined
in the straightforward way:
Definition Qcplus (x y : Qc) := !!(x+y).
Infix "+" := Qcplus : Qc_scope.
Definition Qcmult (x y : Qc) := !!(x*y).
Infix "*" := Qcmult : Qc_scope.
Definition Qcopp (x : Qc) := !!(-x).
Notation "- x" := (Qcopp x) : Qc_scope.
Definition Qcminus (x y : Qc) := x+-y.
Infix "-" := Qcminus : Qc_scope.
Definition Qcinv (x : Qc) := !!(/x).
Notation "/ x" := (Qcinv x) : Qc_scope.
Definition Qcdiv (x y : Qc) := x*/y.
Infix "/" := Qcdiv : Qc_scope.
0
and 1
are apart
Lemma Q_apart_0_1 : 1 <> 0.
Proof.
unfold Q2Qc.
intros H; discriminate H.
Qed.
Ltac qc := match goal with
| q:Qc |- _ => destruct q; qc
| _ => apply Qc_is_canon; simpl; repeat rewrite Qred_correct
end.
Opaque Qred.
Addition is associative:
Theorem Qcplus_assoc : forall x y z, x+(y+z)=(x+y)+z.
Proof.
intros; qc; apply Qplus_assoc.
Qed.
0
is a neutral element for addition:
Lemma Qcplus_0_l : forall x, 0+x = x.
Proof.
intros; qc; apply Qplus_0_l.
Qed.
Lemma Qcplus_0_r : forall x, x+0 = x.
Proof.
intros; qc; apply Qplus_0_r.
Qed.
Commutativity of addition:
Theorem Qcplus_comm : forall x y, x+y = y+x.
Proof.
intros; qc; apply Qplus_comm.
Qed.
Properties of
Qopp
Lemma Qcopp_involutive : forall q, - -q = q.
Proof.
intros; qc; apply Qopp_involutive.
Qed.
Theorem Qcplus_opp_r : forall q, q+(-q) = 0.
Proof.
intros; qc; apply Qplus_opp_r.
Qed.
Multiplication is associative:
Theorem Qcmult_assoc : forall n m p, n*(m*p)=(n*m)*p.
Proof.
intros; qc; apply Qmult_assoc.
Qed.
1
is a neutral element for multiplication:
Lemma Qcmult_1_l : forall n, 1*n = n.
Proof.
intros; qc; apply Qmult_1_l.
Qed.
Theorem Qcmult_1_r : forall n, n*1=n.
Proof.
intros; qc; apply Qmult_1_r.
Qed.
Commutativity of multiplication
Theorem Qcmult_comm : forall x y, x*y=y*x.
Proof.
intros; qc; apply Qmult_comm.
Qed.
Distributivity
Theorem Qcmult_plus_distr_r : forall x y z, x*(y+z)=(x*y)+(x*z).
Proof.
intros; qc; apply Qmult_plus_distr_r.
Qed.
Theorem Qcmult_plus_distr_l : forall x y z, (x+y)*z=(x*z)+(y*z).
Proof.
intros; qc; apply Qmult_plus_distr_l.
Qed.
Integrality
Theorem Qcmult_integral : forall x y, x*y=0 -> x=0 \/ y=0.
Proof.
intros.
destruct (Qmult_integral x y); try qc; auto.
injection H; clear H; intros.
rewrite <- (Qred_correct (x*y)).
rewrite <- (Qred_correct 0).
rewrite H; auto with qarith.
Qed.
Theorem Qcmult_integral_l : forall x y, ~ x = 0 -> x*y = 0 -> y = 0.
Proof.
intros; destruct (Qcmult_integral _ _ H0); tauto.
Qed.
Inverse and division.
Theorem Qcmult_inv_r : forall x, x<>0 -> x*(/x) = 1.
Proof.
intros; qc; apply Qmult_inv_r; auto.
Qed.
Theorem Qcmult_inv_l : forall x, x<>0 -> (/x)*x = 1.
Proof.
intros.
rewrite Qcmult_comm.
apply Qcmult_inv_r; auto.
Qed.
Lemma Qcinv_mult_distr : forall p q, / (p * q) = /p * /q.
Proof.
intros; qc; apply Qinv_mult_distr.
Qed.
Theorem Qcdiv_mult_l : forall x y, y<>0 -> (x*y)/y = x.
Proof.
unfold Qcdiv.
intros.
rewrite <- Qcmult_assoc.
rewrite Qcmult_inv_r; auto.
apply Qcmult_1_r.
Qed.
Theorem Qcmult_div_r : forall x y, ~ y = 0 -> y*(x/y) = x.
Proof.
unfold Qcdiv.
intros.
rewrite Qcmult_assoc.
rewrite Qcmult_comm.
rewrite Qcmult_assoc.
rewrite Qcmult_inv_l; auto.
apply Qcmult_1_l.
Qed.
Properties of order upon Q.
Lemma Qcle_refl : forall x, x<=x.
Proof.
unfold Qcle; intros; simpl; apply Qle_refl.
Qed.
Lemma Qcle_antisym : forall x y, x<=y -> y<=x -> x=y.
Proof.
unfold Qcle; intros; simpl in *.
apply Qc_is_canon; apply Qle_antisym; auto.
Qed.
Lemma Qcle_trans : forall x y z, x<=y -> y<=z -> x<=z.
Proof.
unfold Qcle; intros; eapply Qle_trans; eauto.
Qed.
Lemma Qclt_not_eq : forall x y, x<y -> x<>y.
Proof.
unfold Qclt; intros; simpl in *.
intro; destruct (Qlt_not_eq _ _ H).
subst; auto with qarith.
Qed.
Large = strict or equal
Lemma Qclt_le_weak : forall x y, x<y -> x<=y.
Proof.
unfold Qcle, Qclt; intros; apply Qlt_le_weak; auto.
Qed.
Lemma Qcle_lt_trans : forall x y z, x<=y -> y<z -> x<z.
Proof.
unfold Qcle, Qclt; intros; eapply Qle_lt_trans; eauto.
Qed.
Lemma Qclt_le_trans : forall x y z, x<y -> y<=z -> x<z.
Proof.
unfold Qcle, Qclt; intros; eapply Qlt_le_trans; eauto.
Qed.
Lemma Qlt_trans : forall x y z, x<y -> y<z -> x<z.
Proof.
unfold Qclt; intros; eapply Qlt_trans; eauto.
Qed.
x<y
iff ~(y<=x)
Lemma Qcnot_lt_le : forall x y, ~ x<y -> y<=x.
Proof.
unfold Qcle, Qclt; intros; apply Qnot_lt_le; auto.
Qed.
Lemma Qcnot_le_lt : forall x y, ~ x<=y -> y<x.
Proof.
unfold Qcle, Qclt; intros; apply Qnot_le_lt; auto.
Qed.
Lemma Qclt_not_le : forall x y, x<y -> ~ y<=x.
Proof.
unfold Qcle, Qclt; intros; apply Qlt_not_le; auto.
Qed.
Lemma Qcle_not_lt : forall x y, x<=y -> ~ y<x.
Proof.
unfold Qcle, Qclt; intros; apply Qle_not_lt; auto.
Qed.
Lemma Qcle_lt_or_eq : forall x y, x<=y -> x<y \/ x==y.
Proof.
unfold Qcle, Qclt; intros; apply Qle_lt_or_eq; auto.
Qed.
Some decidability results about orders.
Lemma Qc_dec : forall x y, {x<y} + {y<x} + {x=y}.
Proof.
unfold Qclt, Qcle; intros.
destruct (Q_dec x y) as [H|H].
left; auto.
right; apply Qc_is_canon; auto.
Defined.
Lemma Qclt_le_dec : forall x y, {x<y} + {y<=x}.
Proof.
unfold Qclt, Qcle; intros; apply Qlt_le_dec; auto.
Defined.
Compatibility of operations with respect to order.
Lemma Qcopp_le_compat : forall p q, p<=q -> -q <= -p.
Proof.
unfold Qcle, Qcopp; intros; simpl in *.
repeat rewrite Qred_correct.
apply Qopp_le_compat; auto.
Qed.
Lemma Qcle_minus_iff : forall p q, p <= q <-> 0 <= q+-p.
Proof.
unfold Qcle, Qcminus; intros; simpl in *.
repeat rewrite Qred_correct.
apply Qle_minus_iff; auto.
Qed.
Lemma Qclt_minus_iff : forall p q, p < q <-> 0 < q+-p.
Proof.
unfold Qclt, Qcplus, Qcopp; intros; simpl in *.
repeat rewrite Qred_correct.
apply Qlt_minus_iff; auto.
Qed.
Lemma Qcplus_le_compat :
forall x y z t, x<=y -> z<=t -> x+z <= y+t.
Proof.
unfold Qcplus, Qcle; intros; simpl in *.
repeat rewrite Qred_correct.
apply Qplus_le_compat; auto.
Qed.
Lemma Qcmult_le_compat_r : forall x y z, x <= y -> 0 <= z -> x*z <= y*z.
Proof.
unfold Qcmult, Qcle; intros; simpl in *.
repeat rewrite Qred_correct.
apply Qmult_le_compat_r; auto.
Qed.
Lemma Qcmult_lt_0_le_reg_r : forall x y z, 0 < z -> x*z <= y*z -> x <= y.
Proof.
unfold Qcmult, Qcle, Qclt; intros; simpl in *.
repeat progress rewrite Qred_correct in * |-.
eapply Qmult_lt_0_le_reg_r; eauto.
Qed.
Lemma Qcmult_lt_compat_r : forall x y z, 0 < z -> x < y -> x*z < y*z.
Proof.
unfold Qcmult, Qclt; intros; simpl in *.
repeat progress rewrite Qred_correct in *.
eapply Qmult_lt_compat_r; eauto.
Qed.
Rational to the n-th power
Fixpoint Qcpower (q:Qc)(n:nat) { struct n } : Qc :=
match n with
| O => 1
| S n => q * (Qcpower q n)
end.
Notation " q ^ n " := (Qcpower q n) : Qc_scope.
Lemma Qcpower_1 : forall n, 1^n = 1.
Proof.
induction n; simpl; auto with qarith.
rewrite IHn; auto with qarith.
Qed.
Lemma Qcpower_0 : forall n, n<>O -> 0^n = 0.
Proof.
destruct n; simpl.
destruct 1; auto.
intros.
apply Qc_is_canon.
simpl.
compute; auto.
Qed.
Lemma Qpower_pos : forall p n, 0 <= p -> 0 <= p^n.
Proof.
induction n; simpl; auto with qarith.
intros; compute; intro; discriminate.
intros.
apply Qcle_trans with (0*(p^n)).
compute; intro; discriminate.
apply Qcmult_le_compat_r; auto.
Qed.
And now everything is easier concerning tactics:
A ring tactic for rational numbers
Definition Qc_eq_bool (x y : Qc) :=
if Qc_eq_dec x y then true else false.
Lemma Qc_eq_bool_correct : forall x y : Qc, Qc_eq_bool x y = true -> x=y.
Proof.
intros x y; unfold Qc_eq_bool in |- *; case (Qc_eq_dec x y); simpl in |- *; auto.
intros _ H; inversion H.
Qed.
Definition Qcrt : ring_theory 0 1 Qcplus Qcmult Qcminus Qcopp (eq(A:=Qc)).
Proof.
constructor.
exact Qcplus_0_l.
exact Qcplus_comm.
exact Qcplus_assoc.
exact Qcmult_1_l.
exact Qcmult_comm.
exact Qcmult_assoc.
exact Qcmult_plus_distr_l.
reflexivity.
exact Qcplus_opp_r.
Qed.
Definition Qcft :
field_theory 0%Qc 1%Qc Qcplus Qcmult Qcminus Qcopp Qcdiv Qcinv (eq(A:=Qc)).
Proof.
constructor.
exact Qcrt.
exact Q_apart_0_1.
reflexivity.
exact Qcmult_inv_l.
Qed.
Add Field Qcfield : Qcft.
A field tactic for rational numbers
Example test_field : (forall x y : Qc, y<>0 -> (x/y)*y = x)%Qc.
intros.
field.
auto.
Qed.