Library Coq.Lists.SetoidList
Require Export List.
Require Export Sorting.
Require Export Setoid.
Set Implicit Arguments.
Unset Strict Implicit.
This can be seen as a complement of predicate
lelistA
and sort
found in Sorting
.
Section Type_with_equality.
Variable A : Set.
Variable eqA : A -> A -> Prop.
Being in a list modulo an equality relation over type
A
.
Inductive InA (x : A) : list A -> Prop :=
| InA_cons_hd : forall y l, eqA x y -> InA x (y :: l)
| InA_cons_tl : forall y l, InA x l -> InA x (y :: l).
Hint Constructors InA.
An alternative definition of
InA
.
Lemma InA_alt : forall x l, InA x l <-> exists y, eqA x y /\ In y l.
Proof.
induction l; intuition.
inversion H.
firstorder.
inversion H1; firstorder.
firstorder; subst; auto.
Qed.
A list without redundancy modulo the equality over
A
.
Inductive NoDupA : list A -> Prop :=
| NoDupA_nil : NoDupA nil
| NoDupA_cons : forall x l, ~ InA x l -> NoDupA l -> NoDupA (x::l).
Hint Constructors NoDupA.
lists with same elements modulo
eqA
Definition eqlistA l l' := forall x, InA x l <-> InA x l'.
Results concerning lists modulo
eqA
Hypothesis eqA_refl : forall x, eqA x x.
Hypothesis eqA_sym : forall x y, eqA x y -> eqA y x.
Hypothesis eqA_trans : forall x y z, eqA x y -> eqA y z -> eqA x z.
Hint Resolve eqA_refl eqA_trans.
Hint Immediate eqA_sym.
Lemma InA_eqA : forall l x y, eqA x y -> InA x l -> InA y l.
Proof.
intros s x y.
do 2 rewrite InA_alt.
intros H (z,(U,V)).
exists z; split; eauto.
Qed.
Hint Immediate InA_eqA.
Lemma In_InA : forall l x, In x l -> InA x l.
Proof.
simple induction l; simpl in |- *; intuition.
subst; auto.
Qed.
Hint Resolve In_InA.
Lemma InA_split : forall l x, InA x l ->
exists l1, exists y, exists l2,
eqA x y /\ l = l1++y::l2.
Proof.
induction l; inversion_clear 1.
exists (@nil A); exists a; exists l; auto.
destruct (IHl x H0) as (l1,(y,(l2,(H1,H2)))).
exists (a::l1); exists y; exists l2; auto.
split; simpl; f_equal; auto.
Qed.
Results concerning lists modulo
eqA
and ltA
Variable ltA : A -> A -> Prop.
Hypothesis ltA_trans : forall x y z, ltA x y -> ltA y z -> ltA x z.
Hypothesis ltA_not_eqA : forall x y, ltA x y -> ~ eqA x y.
Hypothesis ltA_eqA : forall x y z, ltA x y -> eqA y z -> ltA x z.
Hypothesis eqA_ltA : forall x y z, eqA x y -> ltA y z -> ltA x z.
Hint Resolve ltA_trans.
Hint Immediate ltA_eqA eqA_ltA.
Notation InfA:=(lelistA ltA).
Notation SortA:=(sort ltA).
Lemma InfA_ltA :
forall l x y, ltA x y -> InfA y l -> InfA x l.
Proof.
intro s; case s; constructor; inversion_clear H0.
eapply ltA_trans; eauto.
Qed.
Lemma InfA_eqA :
forall l x y, eqA x y -> InfA y l -> InfA x l.
Proof.
intro s; case s; constructor; inversion_clear H0; eauto.
Qed.
Hint Immediate InfA_ltA InfA_eqA.
Lemma SortA_InfA_InA :
forall l x a, SortA l -> InfA a l -> InA x l -> ltA a x.
Proof.
simple induction l.
intros; inversion H1.
intros.
inversion_clear H0; inversion_clear H1; inversion_clear H2.
eapply ltA_eqA; eauto.
eauto.
Qed.
Lemma In_InfA :
forall l x, (forall y, In y l -> ltA x y) -> InfA x l.
Proof.
simple induction l; simpl in |- *; intros; constructor; auto.
Qed.
Lemma InA_InfA :
forall l x, (forall y, InA y l -> ltA x y) -> InfA x l.
Proof.
simple induction l; simpl in |- *; intros; constructor; auto.
Qed.
Lemma InfA_alt :
forall l x, SortA l -> (InfA x l <-> (forall y, InA y l -> ltA x y)).
Proof.
split.
intros; eapply SortA_InfA_InA; eauto.
apply InA_InfA.
Qed.
Lemma SortA_NoDupA : forall l, SortA l -> NoDupA l.
Proof.
simple induction l; auto.
intros x l' H H0.
inversion_clear H0.
constructor; auto.
intro.
assert (ltA x x) by (eapply SortA_InfA_InA; eauto).
elim (ltA_not_eqA H3); auto.
Qed.
Lemma NoDupA_app : forall l l', NoDupA l -> NoDupA l' ->
(forall x, InA x l -> InA x l' -> False) ->
NoDupA (l++l').
Proof.
induction l; simpl; auto; intros.
inversion_clear H.
constructor.
rewrite InA_alt; intros (y,(H4,H5)).
destruct (in_app_or _ _ _ H5).
elim H2.
rewrite InA_alt.
exists y; auto.
apply (H1 a).
auto.
rewrite InA_alt.
exists y; auto.
apply IHl; auto.
intros.
apply (H1 x); auto.
Qed.
Lemma NoDupA_rev : forall l, NoDupA l -> NoDupA (rev l).
Proof.
induction l.
simpl; auto.
simpl; intros.
inversion_clear H.
apply NoDupA_app; auto.
constructor; auto.
intro H2; inversion H2.
intros x.
rewrite InA_alt.
intros (x1,(H2,H3)).
inversion_clear 1.
destruct H0.
apply InA_eqA with x1; eauto.
apply In_InA.
rewrite In_rev; auto.
inversion H4.
Qed.
Lemma InA_app : forall l1 l2 x,
InA x (l1 ++ l2) -> InA x l1 \/ InA x l2.
Proof.
induction l1; simpl in *; intuition.
inversion_clear H; auto.
elim (IHl1 l2 x H0); auto.
Qed.
Hint Constructors lelistA sort.
Lemma InfA_app : forall l1 l2 a, InfA a l1 -> InfA a l2 -> InfA a (l1++l2).
Proof.
induction l1; simpl; auto.
inversion_clear 1; auto.
Qed.
Lemma SortA_app :
forall l1 l2, SortA l1 -> SortA l2 ->
(forall x y, InA x l1 -> InA y l2 -> ltA x y) ->
SortA (l1 ++ l2).
Proof.
induction l1; simpl in *; intuition.
inversion_clear H.
constructor; auto.
apply InfA_app; auto.
destruct l2; auto.
Qed.
Section Remove.
Hypothesis eqA_dec : forall x y : A, {eqA x y}+{~(eqA x y)}.
Lemma InA_dec : forall x l, { InA x l } + { ~ InA x l }.
Proof.
induction l.
right; auto.
red; inversion 1.
destruct (eqA_dec x a).
left; auto.
destruct IHl.
left; auto.
right; red; inversion_clear 1; tauto.
Qed.
Fixpoint removeA (x : A) (l : list A){struct l} : list A :=
match l with
| nil => nil
| y::tl => if (eqA_dec x y) then removeA x tl else y::(removeA x tl)
end.
Lemma removeA_filter : forall x l,
removeA x l = filter (fun y => if eqA_dec x y then false else true) l.
Proof.
induction l; simpl; auto.
destruct (eqA_dec x a); auto.
rewrite IHl; auto.
Qed.
Lemma removeA_InA : forall l x y, InA y (removeA x l) <-> InA y l /\ ~eqA x y.
Proof.
induction l; simpl; auto.
split.
inversion_clear 1.
destruct 1; inversion_clear H.
intros.
destruct (eqA_dec x a); simpl; auto.
rewrite IHl; split; destruct 1; split; auto.
inversion_clear H; auto.
destruct H0; apply eqA_trans with a; auto.
split.
inversion_clear 1.
split; auto.
swap n.
apply eqA_trans with y; auto.
rewrite (IHl x y) in H0; destruct H0; auto.
destruct 1; inversion_clear H; auto.
constructor 2; rewrite IHl; auto.
Qed.
Lemma removeA_NoDupA :
forall s x, NoDupA s -> NoDupA (removeA x s).
Proof.
simple induction s; simpl; intros.
auto.
inversion_clear H0.
destruct (eqA_dec x a); simpl; auto.
constructor; auto.
rewrite removeA_InA.
intuition.
Qed.
Lemma removeA_eqlistA : forall l l' x,
~InA x l -> eqlistA (x :: l) l' -> eqlistA l (removeA x l').
Proof.
unfold eqlistA; intros.
rewrite removeA_InA.
split; intros.
rewrite <- H0; split; auto.
swap H.
apply InA_eqA with x0; auto.
rewrite <- (H0 x0) in H1.
destruct H1.
inversion_clear H1; auto.
elim H2; auto.
Qed.
Let addlistA x l l' := forall y, InA y l' <-> eqA x y \/ InA y l.
Lemma removeA_add :
forall s s' x x', NoDupA s -> NoDupA (x' :: s') ->
~ eqA x x' -> ~ InA x s ->
addlistA x s (x' :: s') -> addlistA x (removeA x' s) s'.
Proof.
unfold addlistA; intros.
inversion_clear H0.
rewrite removeA_InA; auto.
split; intros.
destruct (eqA_dec x y); auto; intros.
right; split; auto.
destruct (H3 y); clear H3.
destruct H6; intuition.
swap H4; apply InA_eqA with y; auto.
destruct H0.
assert (InA y (x' :: s')) by (rewrite H3; auto).
inversion_clear H6; auto.
elim H1; apply eqA_trans with y; auto.
destruct H0.
assert (InA y (x' :: s')) by (rewrite H3; auto).
inversion_clear H7; auto.
elim H6; auto.
Qed.
Section Fold.
Variable B:Set.
Variable eqB:B->B->Prop.
Two-argument functions that allow to reorder its arguments.
Definition transpose (f : A -> B -> B) :=
forall (x y : A) (z : B), eqB (f x (f y z)) (f y (f x z)).
Compatibility of a two-argument function with respect to two equalities.
Definition compat_op (f : A -> B -> B) :=
forall (x x' : A) (y y' : B), eqA x x' -> eqB y y' -> eqB (f x y) (f x' y').
Compatibility of a function upon natural numbers.
Definition compat_nat (f : A -> nat) :=
forall x x' : A, eqA x x' -> f x = f x'.
Variable st:Setoid_Theory _ eqB.
Variable f:A->B->B.
Variable Comp:compat_op f.
Variable Ass:transpose f.
Variable i:B.
Lemma removeA_fold_right_0 :
forall s x, ~InA x s ->
eqB (fold_right f i s) (fold_right f i (removeA x s)).
Proof.
simple induction s; simpl; intros.
refl_st.
destruct (eqA_dec x a); simpl; intros.
absurd_hyp e; auto.
apply Comp; auto.
Qed.
Lemma removeA_fold_right :
forall s x, NoDupA s -> InA x s ->
eqB (fold_right f i s) (f x (fold_right f i (removeA x s))).
Proof.
simple induction s; simpl.
inversion_clear 2.
intros.
inversion_clear H0.
destruct (eqA_dec x a); simpl; intros.
apply Comp; auto.
apply removeA_fold_right_0; auto.
swap H2; apply InA_eqA with x; auto.
inversion_clear H1.
destruct n; auto.
trans_st (f a (f x (fold_right f i (removeA x l)))).
Qed.
Lemma fold_right_equal :
forall s s', NoDupA s -> NoDupA s' ->
eqlistA s s' -> eqB (fold_right f i s) (fold_right f i s').
Proof.
simple induction s.
destruct s'; simpl.
intros; refl_st; auto.
unfold eqlistA; intros.
destruct (H1 a).
assert (X : InA a nil); auto; inversion X.
intros x l Hrec s' N N' E; simpl in *.
trans_st (f x (fold_right f i (removeA x s'))).
apply Comp; auto.
apply Hrec; auto.
inversion N; auto.
apply removeA_NoDupA; auto; apply eqA_trans.
apply removeA_eqlistA; auto.
inversion_clear N; auto.
sym_st.
apply removeA_fold_right; auto.
unfold eqlistA in E.
rewrite <- E; auto.
Qed.
Lemma fold_right_add :
forall s' s x, NoDupA s -> NoDupA s' -> ~ InA x s ->
addlistA x s s' -> eqB (fold_right f i s') (f x (fold_right f i s)).
Proof.
simple induction s'.
unfold addlistA; intros.
destruct (H2 x); clear H2.
assert (X : InA x nil); auto; inversion X.
intros x' l' Hrec s x N N' IN EQ; simpl.
destruct (eqA_dec x x').
apply Comp; auto.
apply fold_right_equal; auto.
inversion_clear N'; trivial.
unfold eqlistA; unfold addlistA in EQ; intros.
destruct (EQ x0); clear EQ.
split; intros.
destruct H; auto.
inversion_clear N'.
destruct H2; apply InA_eqA with x0; auto.
apply eqA_trans with x; auto.
assert (X:InA x0 (x' :: l')); auto; inversion_clear X; auto.
destruct IN; apply InA_eqA with x0; auto.
apply eqA_trans with x'; auto.
trans_st (f x' (f x (fold_right f i (removeA x' s)))).
apply Comp; auto.
apply Hrec; auto.
apply removeA_NoDupA; auto; apply eqA_trans.
inversion_clear N'; auto.
rewrite removeA_InA; intuition.
apply removeA_add; auto.
trans_st (f x (f x' (fold_right f i (removeA x' s)))).
apply Comp; auto.
sym_st.
apply removeA_fold_right; auto.
destruct (EQ x').
destruct H; auto; destruct n; auto.
Qed.
End Fold.
End Remove.
End Type_with_equality.
Hint Constructors InA.
Hint Constructors NoDupA.
Hint Constructors sort.
Hint Constructors lelistA.
Section Find.
Variable A B : Set.
Variable eqA : A -> A -> Prop.
Hypothesis eqA_sym : forall x y, eqA x y -> eqA y x.
Hypothesis eqA_trans : forall x y z, eqA x y -> eqA y z -> eqA x z.
Hypothesis eqA_dec : forall x y : A, {eqA x y}+{~(eqA x y)}.
Fixpoint findA (f : A -> bool) (l:list (A*B)) : option B :=
match l with
| nil => None
| (a,b)::l => if f a then Some b else findA f l
end.
Lemma findA_NoDupA :
forall l a b,
NoDupA (fun p p' => eqA (fst p) (fst p')) l ->
(InA (fun p p' => eqA (fst p) (fst p') /\ snd p = snd p') (a,b) l <->
findA (fun a' => if eqA_dec a a' then true else false) l = Some b).
Proof.
induction l; simpl; intros.
split; intros; try discriminate.
inversion H0.
destruct a as (a',b'); rename a0 into a.
inversion_clear H.
split; intros.
inversion_clear H.
simpl in *; destruct H2; subst b'.
destruct (eqA_dec a a'); intuition.
destruct (eqA_dec a a'); simpl.
destruct H0.
generalize e H2 eqA_trans eqA_sym; clear.
induction l.
inversion 2.
inversion_clear 2; intros; auto.
destruct a0.
compute in H; destruct H.
subst b.
constructor 1; auto.
simpl.
apply eqA_trans with a; auto.
rewrite <- IHl; auto.
destruct (eqA_dec a a'); simpl in *.
inversion H; clear H; intros; subst b'; auto.
constructor 2.
rewrite IHl; auto.
Qed.
End Find.