Library Coq.Reals.Sqrt_reg

Require Import Rbase.
Require Import Rfunctions.
Require Import Ranalysis1.
Require Import R_sqrt. Open Local Scope R_scope.

Lemma sqrt_var_maj :
  forall h:R, Rabs h <= 1 -> Rabs (sqrt (1 + h) - 1) <= Rabs h.
Proof.
  intros; cut (0 <= 1 + h).
  intro; apply Rle_trans with (Rabs (sqrt (Rsqr (1 + h)) - 1)).
  case (total_order_T h 0); intro.
  elim s; intro.
  repeat rewrite Rabs_left.
  unfold Rminus in |- *; do 2 rewrite <- (Rplus_comm (-1)).
  do 2 rewrite Ropp_plus_distr; rewrite Ropp_involutive;
    apply Rplus_le_compat_l.
  apply Ropp_le_contravar; apply sqrt_le_1.
  apply Rle_0_sqr.
  apply H0.
  pattern (1 + h) at 2 in |- *; rewrite <- Rmult_1_r; unfold Rsqr in |- *;
    apply Rmult_le_compat_l.
  apply H0.
  pattern 1 at 2 in |- *; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left;
    assumption.
  apply Rplus_lt_reg_r with 1; rewrite Rplus_0_r; rewrite Rplus_comm;
    unfold Rminus in |- *; rewrite Rplus_assoc; rewrite Rplus_opp_l;
      rewrite Rplus_0_r.
  pattern 1 at 2 in |- *; rewrite <- sqrt_1; apply sqrt_lt_1.
  apply Rle_0_sqr.
  left; apply Rlt_0_1.
  pattern 1 at 2 in |- *; rewrite <- Rsqr_1; apply Rsqr_incrst_1.
  pattern 1 at 2 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
    assumption.
  apply H0.
  left; apply Rlt_0_1.
  apply Rplus_lt_reg_r with 1; rewrite Rplus_0_r; rewrite Rplus_comm;
    unfold Rminus in |- *; rewrite Rplus_assoc; rewrite Rplus_opp_l;
      rewrite Rplus_0_r.
  pattern 1 at 2 in |- *; rewrite <- sqrt_1; apply sqrt_lt_1.
  apply H0.
  left; apply Rlt_0_1.
  pattern 1 at 2 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
    assumption.
  rewrite b; rewrite Rplus_0_r; rewrite Rsqr_1; rewrite sqrt_1; right;
    reflexivity.
  repeat rewrite Rabs_right.
  unfold Rminus in |- *; do 2 rewrite <- (Rplus_comm (-1));
    apply Rplus_le_compat_l.
  apply sqrt_le_1.
  apply H0.
  apply Rle_0_sqr.
  pattern (1 + h) at 1 in |- *; rewrite <- Rmult_1_r; unfold Rsqr in |- *;
    apply Rmult_le_compat_l.
  apply H0.
  pattern 1 at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left;
    assumption.
  apply Rle_ge; apply Rplus_le_reg_l with 1.
  rewrite Rplus_0_r; rewrite Rplus_comm; unfold Rminus in |- *;
    rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r.
  pattern 1 at 1 in |- *; rewrite <- sqrt_1; apply sqrt_le_1.
  left; apply Rlt_0_1.
  apply Rle_0_sqr.
  pattern 1 at 1 in |- *; rewrite <- Rsqr_1; apply Rsqr_incr_1.
  pattern 1 at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left;
    assumption.
  left; apply Rlt_0_1.
  apply H0.
  apply Rle_ge; left; apply Rplus_lt_reg_r with 1.
  rewrite Rplus_0_r; rewrite Rplus_comm; unfold Rminus in |- *;
    rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r.
  pattern 1 at 1 in |- *; rewrite <- sqrt_1; apply sqrt_lt_1.
  left; apply Rlt_0_1.
  apply H0.
  pattern 1 at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
    assumption.
  rewrite sqrt_Rsqr.
  replace (1 + h - 1) with h; [ right; reflexivity | ring ].
  apply H0.
  case (total_order_T h 0); intro.
  elim s; intro.
  rewrite (Rabs_left h a) in H.
  apply Rplus_le_reg_l with (- h).
  rewrite Rplus_0_r; rewrite Rplus_comm; rewrite Rplus_assoc;
    rewrite Rplus_opp_r; rewrite Rplus_0_r; exact H.
  left; rewrite b; rewrite Rplus_0_r; apply Rlt_0_1.
  left; apply Rplus_lt_0_compat.
  apply Rlt_0_1.
  apply r.
Qed.

sqrt is continuous in 1
Lemma sqrt_continuity_pt_R1 : continuity_pt sqrt 1.
Proof.
  unfold continuity_pt in |- *; unfold continue_in in |- *;
    unfold limit1_in in |- *; unfold limit_in in |- *;
      unfold dist in |- *; simpl in |- *; unfold R_dist in |- *;
        intros.
  set (alpha := Rmin eps 1).
  exists alpha; intros.
  split.
  unfold alpha in |- *; unfold Rmin in |- *; case (Rle_dec eps 1); intro.
  assumption.
  apply Rlt_0_1.
  intros; elim H0; intros.
  rewrite sqrt_1; replace x with (1 + (x - 1)); [ idtac | ring ];
    apply Rle_lt_trans with (Rabs (x - 1)).
  apply sqrt_var_maj.
  apply Rle_trans with alpha.
  left; apply H2.
  unfold alpha in |- *; apply Rmin_r.
  apply Rlt_le_trans with alpha;
    [ apply H2 | unfold alpha in |- *; apply Rmin_l ].
Qed.

sqrt is continuous forall x>0
Lemma sqrt_continuity_pt : forall x:R, 0 < x -> continuity_pt sqrt x.
Proof.
  intros; generalize sqrt_continuity_pt_R1.
  unfold continuity_pt in |- *; unfold continue_in in |- *;
    unfold limit1_in in |- *; unfold limit_in in |- *;
      unfold dist in |- *; simpl in |- *; unfold R_dist in |- *;
        intros.
  cut (0 < eps / sqrt x).
  intro; elim (H0 _ H2); intros alp_1 H3.
  elim H3; intros.
  set (alpha := alp_1 * x).
  exists (Rmin alpha x); intros.
  split.
  change (0 < Rmin alpha x) in |- *; unfold Rmin in |- *;
    case (Rle_dec alpha x); intro.
  unfold alpha in |- *; apply Rmult_lt_0_compat; assumption.
  apply H.
  intros; replace x0 with (x + (x0 - x)); [ idtac | ring ];
    replace (sqrt (x + (x0 - x)) - sqrt x) with
    (sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1)).
  rewrite Rabs_mult; rewrite (Rabs_right (sqrt x)).
  apply Rmult_lt_reg_l with (/ sqrt x).
  apply Rinv_0_lt_compat; apply sqrt_lt_R0; assumption.
  rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
  rewrite Rmult_1_l; rewrite Rmult_comm.
  unfold Rdiv in H5.
  case (Req_dec x x0); intro.
  rewrite H7; unfold Rminus, Rdiv in |- *; rewrite Rplus_opp_r;
    rewrite Rmult_0_l; rewrite Rplus_0_r; rewrite Rplus_opp_r;
      rewrite Rabs_R0.
  apply Rmult_lt_0_compat.
  assumption.
  apply Rinv_0_lt_compat; rewrite <- H7; apply sqrt_lt_R0; assumption.
  apply H5.
  split.
  unfold D_x, no_cond in |- *.
  split.
  trivial.
  red in |- *; intro.
  cut ((x0 - x) * / x = 0).
  intro.
  elim (Rmult_integral _ _ H9); intro.
  elim H7.
  apply (Rminus_diag_uniq_sym _ _ H10).
  assert (H11 := Rmult_eq_0_compat_r _ x H10).
  rewrite <- Rinv_l_sym in H11.
  elim R1_neq_R0; exact H11.
  red in |- *; intro; rewrite H12 in H; elim (Rlt_irrefl _ H).
  symmetry in |- *; apply Rplus_eq_reg_l with 1; rewrite Rplus_0_r;
    unfold Rdiv in H8; exact H8.
  unfold Rminus in |- *; rewrite Rplus_comm; rewrite <- Rplus_assoc;
    rewrite Rplus_opp_l; rewrite Rplus_0_l; elim H6; intros.
  unfold Rdiv in |- *; rewrite Rabs_mult.
  rewrite Rabs_Rinv.
  rewrite (Rabs_right x).
  rewrite Rmult_comm; apply Rmult_lt_reg_l with x.
  apply H.
  rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym.
  rewrite Rmult_1_l; rewrite Rmult_comm; fold alpha in |- *.
  apply Rlt_le_trans with (Rmin alpha x).
  apply H9.
  apply Rmin_l.
  red in |- *; intro; rewrite H10 in H; elim (Rlt_irrefl _ H).
  apply Rle_ge; left; apply H.
  red in |- *; intro; rewrite H10 in H; elim (Rlt_irrefl _ H).
  assert (H7 := sqrt_lt_R0 x H).
  red in |- *; intro; rewrite H8 in H7; elim (Rlt_irrefl _ H7).
  apply Rle_ge; apply sqrt_positivity.
  left; apply H.
  unfold Rminus in |- *; rewrite Rmult_plus_distr_l;
    rewrite Ropp_mult_distr_r_reverse; repeat rewrite <- sqrt_mult.
  rewrite Rmult_1_r; rewrite Rmult_plus_distr_l; rewrite Rmult_1_r;
    unfold Rdiv in |- *; rewrite Rmult_comm; rewrite Rmult_assoc;
      rewrite <- Rinv_l_sym.
  rewrite Rmult_1_r; reflexivity.
  red in |- *; intro; rewrite H7 in H; elim (Rlt_irrefl _ H).
  left; apply H.
  left; apply Rlt_0_1.
  left; apply H.
  elim H6; intros.
  case (Rcase_abs (x0 - x)); intro.
  rewrite (Rabs_left (x0 - x) r) in H8.
  rewrite Rplus_comm.
  apply Rplus_le_reg_l with (- ((x0 - x) / x)).
  rewrite Rplus_0_r; rewrite <- Rplus_assoc; rewrite Rplus_opp_l;
    rewrite Rplus_0_l; unfold Rdiv in |- *; rewrite <- Ropp_mult_distr_l_reverse.
  apply Rmult_le_reg_l with x.
  apply H.
  rewrite Rmult_1_r; rewrite Rmult_comm; rewrite Rmult_assoc;
    rewrite <- Rinv_l_sym.
  rewrite Rmult_1_r; left; apply Rlt_le_trans with (Rmin alpha x).
  apply H8.
  apply Rmin_r.
  red in |- *; intro; rewrite H9 in H; elim (Rlt_irrefl _ H).
  apply Rplus_le_le_0_compat.
  left; apply Rlt_0_1.
  unfold Rdiv in |- *; apply Rmult_le_pos.
  apply Rge_le; exact r.
  left; apply Rinv_0_lt_compat; apply H.
  unfold Rdiv in |- *; apply Rmult_lt_0_compat.
  apply H1.
  apply Rinv_0_lt_compat; apply sqrt_lt_R0; apply H.
Qed.

sqrt is derivable for all x>0
Lemma derivable_pt_lim_sqrt :
  forall x:R, 0 < x -> derivable_pt_lim sqrt x (/ (2 * sqrt x)).
Proof.
  intros; set (g := fun h:R => sqrt x + sqrt (x + h)).
  cut (continuity_pt g 0).
  intro; cut (g 0 <> 0).
  intro; assert (H2 := continuity_pt_inv g 0 H0 H1).
  unfold derivable_pt_lim in |- *; intros; unfold continuity_pt in H2;
    unfold continue_in in H2; unfold limit1_in in H2;
      unfold limit_in in H2; simpl in H2; unfold R_dist in H2.
  elim (H2 eps H3); intros alpha H4.
  elim H4; intros.
  set (alpha1 := Rmin alpha x).
  cut (0 < alpha1).
  intro; exists (mkposreal alpha1 H7); intros.
  replace ((sqrt (x + h) - sqrt x) / h) with (/ (sqrt x + sqrt (x + h))).
  unfold inv_fct, g in H6; replace (2 * sqrt x) with (sqrt x + sqrt (x + 0)).
  apply H6.
  split.
  unfold D_x, no_cond in |- *.
  split.
  trivial.
  apply (sym_not_eq (A:=R)); exact H8.
  unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r;
    apply Rlt_le_trans with alpha1.
  exact H9.
  unfold alpha1 in |- *; apply Rmin_l.
  rewrite Rplus_0_r; ring.
  cut (0 <= x + h).
  intro; cut (0 < sqrt x + sqrt (x + h)).
  intro; apply Rmult_eq_reg_l with (sqrt x + sqrt (x + h)).
  rewrite <- Rinv_r_sym.
  rewrite Rplus_comm; unfold Rdiv in |- *; rewrite <- Rmult_assoc;
    rewrite Rsqr_plus_minus; repeat rewrite Rsqr_sqrt.
  rewrite Rplus_comm; unfold Rminus in |- *; rewrite Rplus_assoc;
    rewrite Rplus_opp_r; rewrite Rplus_0_r; rewrite <- Rinv_r_sym.
  reflexivity.
  apply H8.
  left; apply H.
  assumption.
  red in |- *; intro; rewrite H12 in H11; elim (Rlt_irrefl _ H11).
  red in |- *; intro; rewrite H12 in H11; elim (Rlt_irrefl _ H11).
  apply Rplus_lt_le_0_compat.
  apply sqrt_lt_R0; apply H.
  apply sqrt_positivity; apply H10.
  case (Rcase_abs h); intro.
  rewrite (Rabs_left h r) in H9.
  apply Rplus_le_reg_l with (- h).
  rewrite Rplus_0_r; rewrite Rplus_comm; rewrite Rplus_assoc;
    rewrite Rplus_opp_r; rewrite Rplus_0_r; left; apply Rlt_le_trans with alpha1.
  apply H9.
  unfold alpha1 in |- *; apply Rmin_r.
  apply Rplus_le_le_0_compat.
  left; assumption.
  apply Rge_le; apply r.
  unfold alpha1 in |- *; unfold Rmin in |- *; case (Rle_dec alpha x); intro.
  apply H5.
  apply H.
  unfold g in |- *; rewrite Rplus_0_r.
  cut (0 < sqrt x + sqrt x).
  intro; red in |- *; intro; rewrite H2 in H1; elim (Rlt_irrefl _ H1).
  apply Rplus_lt_0_compat; apply sqrt_lt_R0; apply H.
  replace g with (fct_cte (sqrt x) + comp sqrt (fct_cte x + id))%F;
  [ idtac | reflexivity ].
  apply continuity_pt_plus.
  apply continuity_pt_const; unfold constant, fct_cte in |- *; intro;
    reflexivity.
  apply continuity_pt_comp.
  apply continuity_pt_plus.
  apply continuity_pt_const; unfold constant, fct_cte in |- *; intro;
    reflexivity.
  apply derivable_continuous_pt; apply derivable_pt_id.
  apply sqrt_continuity_pt.
  unfold plus_fct, fct_cte, id in |- *; rewrite Rplus_0_r; apply H.
Qed.

Lemma derivable_pt_sqrt : forall x:R, 0 < x -> derivable_pt sqrt x.
Proof.
  unfold derivable_pt in |- *; intros.
  apply existT with (/ (2 * sqrt x)).
  apply derivable_pt_lim_sqrt; assumption.
Qed.

Lemma derive_pt_sqrt :
  forall (x:R) (pr:0 < x),
    derive_pt sqrt x (derivable_pt_sqrt _ pr) = / (2 * sqrt x).
Proof.
  intros.
  apply derive_pt_eq_0.
  apply derivable_pt_lim_sqrt; assumption.
Qed.

We show that sqrt is continuous for all x>=0
Remark : by definition of sqrt (as extension of Rsqrt on |R), we could also show that sqrt is continuous for all x
Lemma continuity_pt_sqrt : forall x:R, 0 <= x -> continuity_pt sqrt x.
Proof.
  intros; case (Rtotal_order 0 x); intro.
  apply (sqrt_continuity_pt x H0).
  elim H0; intro.
  unfold continuity_pt in |- *; unfold continue_in in |- *;
    unfold limit1_in in |- *; unfold limit_in in |- *;
      simpl in |- *; unfold R_dist in |- *; intros.
  exists (Rsqr eps); intros.
  split.
  change (0 < Rsqr eps) in |- *; apply Rsqr_pos_lt.
  red in |- *; intro; rewrite H3 in H2; elim (Rlt_irrefl _ H2).
  intros; elim H3; intros.
  rewrite <- H1; rewrite sqrt_0; unfold Rminus in |- *; rewrite Ropp_0;
    rewrite Rplus_0_r; rewrite <- H1 in H5; unfold Rminus in H5;
      rewrite Ropp_0 in H5; rewrite Rplus_0_r in H5.
  case (Rcase_abs x0); intro.
  unfold sqrt in |- *; case (Rcase_abs x0); intro.
  rewrite Rabs_R0; apply H2.
  assert (H6 := Rge_le _ _ r0); elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H6 r)).
  rewrite Rabs_right.
  apply Rsqr_incrst_0.
  rewrite Rsqr_sqrt.
  rewrite (Rabs_right x0 r) in H5; apply H5.
  apply Rge_le; exact r.
  apply sqrt_positivity; apply Rge_le; exact r.
  left; exact H2.
  apply Rle_ge; apply sqrt_positivity; apply Rge_le; exact r.
  elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H1 H)).
Qed.