Library Coq.Wellfounded.Inclusion

Author: Bruno Barras

Require Import Relation_Definitions.

Section WfInclusion.
  Variable A : Set.
  Variables R1 R2 : A -> A -> Prop.

  Lemma Acc_incl : inclusion A R1 R2 -> forall z:A, Acc R2 z -> Acc R1 z.
  Proof.
    induction 2.
    apply Acc_intro; auto with sets.
  Qed.

  Hint Resolve Acc_incl.

  Theorem wf_incl : inclusion A R1 R2 -> well_founded R2 -> well_founded R1.
  Proof.
    unfold well_founded in |- *; auto with sets.
  Qed.

End WfInclusion.