Library Coq.Logic.ChoiceFacts

Some facts and definitions concerning choice and description in intuitionistic logic.

We investigate the relations between the following choice and description principles

  • AC_rel = relational form of the (non extensional) axiom of choice (a "set-theoretic" axiom of choice)
  • AC_fun = functional form of the (non extensional) axiom of choice (a "type-theoretic" axiom of choice)
  • AC! = functional relation reification (known as axiom of unique choice in topos theory, sometimes called principle of definite description in the context of constructive type theory)


  • GAC_rel = guarded relational form of the (non extensional) axiom of choice
  • GAC_fun = guarded functional form of the (non extensional) axiom of choice
  • GAC! = guarded functional relation reification


  • OAC_rel = "omniscient" relational form of the (non extensional) axiom of choice
  • OAC_fun = "omniscient" functional form of the (non extensional) axiom of choice (called AC* in Bell Bell)
  • OAC!


  • ID_iota = intuitionistic definite description
  • ID_epsilon = intuitionistic indefinite description


  • D_iota = (weakly classical) definite description principle
  • D_epsilon = (weakly classical) indefinite description principle


  • PI = proof irrelevance
  • IGP = independence of general premises (an unconstrained generalisation of the constructive principle of independence of premises)
  • Drinker = drinker's paradox (small form) (called Ex in Bell Bell)


We let also

IPL_2^2 = 2nd-order impredicative, 2nd-order functional minimal predicate logic IPL_2 = 2nd-order impredicative minimal predicate logic IPL^2 = 2nd-order functional minimal predicate logic (with ex. quant.)

Table of contents

1. Definitions

2. IPL_2^2 |- AC_rel + AC! = AC_fun

3. 1. AC_rel + PI -> GAC_rel and PL_2 |- AC_rel + IGP -> GAC_rel and GAC_rel = OAC_rel

4. 2. IPL^2 |- AC_fun + IGP = GAC_fun = OAC_fun = AC_fun + Drinker

5. Derivability of choice for decidable relations with well-ordered codomain

6. Equivalence of choices on dependent or non dependent functional types

7. Non contradiction of constructive descriptions wrt functional choices

8. Definite description transports classical logic to the computational world

References:

Bell John L. Bell, Choice principles in intuitionistic set theory, unpublished.

Bell93 John L. Bell, Hilbert's Epsilon Operator in Intuitionistic Type Theories, Mathematical Logic Quarterly, volume 39, 1993.

Carlstrøm05 Jesper Carlstrøm, Interpreting descriptions in intentional type theory, Journal of Symbolic Logic 70(2):488-514, 2005.

Set Implicit Arguments.

Notation Local "'inhabited' A" := A (at level 10, only parsing).

Definitions


Choice, reification and description schemes

Section ChoiceSchemes.

Variables A B :Type.

Variables P:A->Prop.

Variables R:A->B->Prop.

Constructive choice and description


AC_rel

Definition RelationalChoice_on :=
  forall R:A->B->Prop,
    (forall x : A, exists y : B, R x y) ->
    (exists R' : A->B->Prop, subrelation R' R /\ forall x, exists! y, R' x y).

AC_fun

Definition FunctionalChoice_on :=
  forall R:A->B->Prop,
    (forall x : A, exists y : B, R x y) ->
    (exists f : A->B, forall x : A, R x (f x)).

AC! or Functional Relation Reification (known as Axiom of Unique Choice in topos theory; also called principle of definite description

Definition FunctionalRelReification_on :=
  forall R:A->B->Prop,
    (forall x : A, exists! y : B, R x y) ->
    (exists f : A->B, forall x : A, R x (f x)).

ID_epsilon (constructive version of indefinite description; combined with proof-irrelevance, it may be connected to Carlstrøm's type theory with a constructive indefinite description operator)

Definition ConstructiveIndefiniteDescription_on :=
  forall P:A->Prop,
    (exists x, P x) -> { x:A | P x }.

ID_iota (constructive version of definite description; combined with proof-irrelevance, it may be connected to Carlstrøm's and Stenlund's type theory with a constructive definite description operator)

Definition ConstructiveDefiniteDescription_on :=
  forall P:A->Prop,
    (exists! x, P x) -> { x:A | P x }.

Weakly classical choice and description


GAC_rel

Definition GuardedRelationalChoice_on :=
  forall P : A->Prop, forall R : A->B->Prop,
    (forall x : A, P x -> exists y : B, R x y) ->
    (exists R' : A->B->Prop,
      subrelation R' R /\ forall x, P x -> exists! y, R' x y).

GAC_fun

Definition GuardedFunctionalChoice_on :=
  forall P : A->Prop, forall R : A->B->Prop,
    inhabited B ->
    (forall x : A, P x -> exists y : B, R x y) ->
    (exists f : A->B, forall x, P x -> R x (f x)).

GFR_fun

Definition GuardedFunctionalRelReification_on :=
  forall P : A->Prop, forall R : A->B->Prop,
    inhabited B ->
    (forall x : A, P x -> exists! y : B, R x y) ->
    (exists f : A->B, forall x : A, P x -> R x (f x)).

OAC_rel

Definition OmniscientRelationalChoice_on :=
  forall R : A->B->Prop,
    exists R' : A->B->Prop,
      subrelation R' R /\ forall x : A, (exists y : B, R x y) -> exists! y, R' x y.

OAC_fun

Definition OmniscientFunctionalChoice_on :=
  forall R : A->B->Prop,
    inhabited B ->
    exists f : A->B, forall x : A, (exists y : B, R x y) -> R x (f x).

D_epsilon

Definition ClassicalIndefiniteDescription :=
  forall P:A->Prop,
    A -> { x:A | (exists x, P x) -> P x }.

D_iota

Definition ClassicalDefiniteDescription :=
  forall P:A->Prop,
    A -> { x:A | (exists! x, P x) -> P x }.

End ChoiceSchemes.

Generalized schemes

Notation RelationalChoice :=
  (forall A B, RelationalChoice_on A B).
Notation FunctionalChoice :=
  (forall A B, FunctionalChoice_on A B).
Notation FunctionalChoiceOnInhabitedSet :=
  (forall A B, inhabited B -> FunctionalChoice_on A B).
Notation FunctionalRelReification :=
  (forall A B, FunctionalRelReification_on A B).

Notation GuardedRelationalChoice :=
  (forall A B, GuardedRelationalChoice_on A B).
Notation GuardedFunctionalChoice :=
  (forall A B, GuardedFunctionalChoice_on A B).
Notation GuardedFunctionalRelReification :=
  (forall A B, GuardedFunctionalRelReification_on A B).

Notation OmniscientRelationalChoice :=
  (forall A B, OmniscientRelationalChoice_on A B).
Notation OmniscientFunctionalChoice :=
  (forall A B, OmniscientFunctionalChoice_on A B).

Notation ConstructiveDefiniteDescription :=
  (forall A, ConstructiveDefiniteDescription_on A).
Notation ConstructiveIndefiniteDescription :=
  (forall A, ConstructiveIndefiniteDescription_on A).

Subclassical schemes

Definition ProofIrrelevance :=
  forall (A:Prop) (a1 a2:A), a1 = a2.

Definition IndependenceOfGeneralPremises :=
  forall (A:Type) (P:A -> Prop) (Q:Prop),
    inhabited A ->
    (Q -> exists x, P x) -> exists x, Q -> P x.

Definition SmallDrinker'sParadox :=
  forall (A:Type) (P:A -> Prop), inhabited A ->
    exists x, (exists x, P x) -> P x.

AC_rel + PDP = AC_fun



We show that the functional formulation of the axiom of Choice (usual formulation in type theory) is equivalent to its relational formulation (only formulation of set theory) + the axiom of (parametric) definite description (aka axiom of unique choice)

This shows that the axiom of choice can be assumed (under its relational formulation) without known inconsistency with classical logic, though definite description conflicts with classical logic

Lemma description_rel_choice_imp_funct_choice :
  forall A B : Type,
    FunctionalRelReification_on A B -> RelationalChoice_on A B -> FunctionalChoice_on A B.
Proof.
  intros A B Descr RelCh R H.
  destruct (RelCh R H) as (R',(HR'R,H0)).
  destruct (Descr R') as (f,Hf).
  firstorder.
  exists f; intro x.
  destruct (H0 x) as (y,(HR'xy,Huniq)).
  rewrite <- (Huniq (f x) (Hf x)).
  apply HR'R; assumption.
Qed.

Lemma funct_choice_imp_rel_choice :
  forall A B, FunctionalChoice_on A B -> RelationalChoice_on A B.
Proof.
  intros A B FunCh R H.
  destruct (FunCh R H) as (f,H0).
  exists (fun x y => f x = y).
  split.
  intros x y Heq; rewrite <- Heq; trivial.
  intro x; exists (f x); split.
    reflexivity.
    trivial.
Qed.

Lemma funct_choice_imp_description :
  forall A B, FunctionalChoice_on A B -> FunctionalRelReification_on A B.
Proof.
  intros A B FunCh R H.
  destruct (FunCh R) as [f H0].
  intro x.
  destruct (H x) as (y,(HRxy,_)).
  exists y; exact HRxy.
  exists f; exact H0.
Qed.

Theorem FunChoice_Equiv_RelChoice_and_ParamDefinDescr :
  forall A B, FunctionalChoice_on A B <->
    RelationalChoice_on A B /\ FunctionalRelReification_on A B.
Proof.
  intros A B; split.
  intro H; split;
    [ exact (funct_choice_imp_rel_choice H) | exact (funct_choice_imp_description H) ].
  intros [H H0]; exact (description_rel_choice_imp_funct_choice H0 H).
Qed.

Connection between the guarded, non guarded and descriptive choices and


We show that the guarded relational formulation of the axiom of Choice comes from the non guarded formulation in presence either of the independance of premises or proof-irrelevance

AC_rel + PI -> GAC_rel and AC_rel + IGP -> GAC_rel and GAC_rel = OAC_rel


Lemma rel_choice_and_proof_irrel_imp_guarded_rel_choice :
  RelationalChoice -> ProofIrrelevance -> GuardedRelationalChoice.
Proof.
  intros rel_choice proof_irrel.
  red in |- *; intros A B P R H.
  destruct (rel_choice _ _ (fun (x:sigT P) (y:B) => R (projT1 x) y)) as (R',(HR'R,H0)).
  intros (x,HPx).
  destruct (H x HPx) as (y,HRxy).
  exists y; exact HRxy.
  set (R'' := fun (x:A) (y:B) => exists H : P x, R' (existT P x H) y).
  exists R''; split.
  intros x y (HPx,HR'xy).
    change x with (projT1 (existT P x HPx)); apply HR'R; exact HR'xy.
  intros x HPx.
  destruct (H0 (existT P x HPx)) as (y,(HR'xy,Huniq)).
  exists y; split. exists HPx; exact HR'xy.
  intros y' (H'Px,HR'xy').
    apply Huniq.
    rewrite proof_irrel with (a1 := HPx) (a2 := H'Px); exact HR'xy'.
Qed.

Lemma rel_choice_indep_of_general_premises_imp_guarded_rel_choice :
  forall A B, inhabited B -> RelationalChoice_on A B ->
    IndependenceOfGeneralPremises -> GuardedRelationalChoice_on A B.
Proof.
  intros A B Inh AC_rel IndPrem P R H.
  destruct (AC_rel (fun x y => P x -> R x y)) as (R',(HR'R,H0)).
  intro x. apply IndPrem. exact Inh. intro Hx.
  apply H; assumption.
  exists (fun x y => P x /\ R' x y).
  firstorder.
Qed.

Lemma guarded_rel_choice_imp_rel_choice :
  forall A B, GuardedRelationalChoice_on A B -> RelationalChoice_on A B.
Proof.
  intros A B GAC_rel R H.
  destruct (GAC_rel (fun _ => True) R) as (R',(HR'R,H0)).
  firstorder.
  exists R'; firstorder.
Qed.

OAC_rel = GAC_rel

Lemma guarded_iff_omniscient_rel_choice :
  GuardedRelationalChoice <-> OmniscientRelationalChoice.
Proof.
  split.
  intros GAC_rel A B R.
  apply (GAC_rel A B (fun x => exists y, R x y) R); auto.
  intros OAC_rel A B P R H.
  destruct (OAC_rel A B R) as (f,Hf); exists f; firstorder.
Qed.

AC_fun + IGP = GAC_fun = OAC_fun = AC_fun + Drinker


AC_fun + IGP = GAC_fun

Lemma guarded_fun_choice_imp_indep_of_general_premises :
  GuardedFunctionalChoice -> IndependenceOfGeneralPremises.
Proof.
  intros GAC_fun A P Q Inh H.
  destruct (GAC_fun unit A (fun _ => Q) (fun _ => P) Inh) as (f,Hf).
  tauto.
  exists (f tt); auto.
Qed.

Lemma guarded_fun_choice_imp_fun_choice :
  GuardedFunctionalChoice -> FunctionalChoiceOnInhabitedSet.
Proof.
  intros GAC_fun A B Inh R H.
  destruct (GAC_fun A B (fun _ => True) R Inh) as (f,Hf).
  firstorder.
  exists f; auto.
Qed.

Lemma fun_choice_and_indep_general_prem_imp_guarded_fun_choice :
  FunctionalChoiceOnInhabitedSet -> IndependenceOfGeneralPremises
  -> GuardedFunctionalChoice.
Proof.
  intros AC_fun IndPrem A B P R Inh H.
  apply (AC_fun A B Inh (fun x y => P x -> R x y)).
  intro x; apply IndPrem; eauto.
Qed.

AC_fun + Drinker = OAC_fun

This was already observed by Bell Bell

Lemma omniscient_fun_choice_imp_small_drinker :
  OmniscientFunctionalChoice -> SmallDrinker'sParadox.
Proof.
  intros OAC_fun A P Inh.
  destruct (OAC_fun unit A (fun _ => P)) as (f,Hf).
  auto.
  exists (f tt); firstorder.
Qed.

Lemma omniscient_fun_choice_imp_fun_choice :
  OmniscientFunctionalChoice -> FunctionalChoiceOnInhabitedSet.
Proof.
  intros OAC_fun A B Inh R H.
  destruct (OAC_fun A B R Inh) as (f,Hf).
  exists f; firstorder.
Qed.

Lemma fun_choice_and_small_drinker_imp_omniscient_fun_choice :
  FunctionalChoiceOnInhabitedSet -> SmallDrinker'sParadox
  -> OmniscientFunctionalChoice.
Proof.
  intros AC_fun Drinker A B R Inh.
  destruct (AC_fun A B Inh (fun x y => (exists y, R x y) -> R x y)) as (f,Hf).
  intro x; apply (Drinker B (R x) Inh).
  exists f; assumption.
Qed.

OAC_fun = GAC_fun

This is derivable from the intuitionistic equivalence between IGP and Drinker but we give a direct proof

Lemma guarded_iff_omniscient_fun_choice :
  GuardedFunctionalChoice <-> OmniscientFunctionalChoice.
Proof.
  split.
  intros GAC_fun A B R Inh.
  apply (GAC_fun A B (fun x => exists y, R x y) R); auto.
  intros OAC_fun A B P R Inh H.
  destruct (OAC_fun A B R Inh) as (f,Hf).
  exists f; firstorder.
Qed.

Derivability of choice for decidable relations with well-ordered codomain


Countable codomains, such as nat, can be equipped with a well-order, which implies the existence of a least element on inhabited decidable subsets. As a consequence, the relational form of the axiom of choice is derivable on nat for decidable relations.

We show instead that functional relation reification and the functional form of the axiom of choice are equivalent on decidable relation with nat as codomain

Require Import Wf_nat.
Require Import Compare_dec.
Require Import Decidable.
Require Import Arith.

Definition has_unique_least_element (A:Type) (R:A->A->Prop) (P:A->Prop) :=
  exists! x, P x /\ forall x', P x' -> R x x'.

Lemma dec_inh_nat_subset_has_unique_least_element :
  forall P:nat->Prop, (forall n, P n \/ ~ P n) ->
    (exists n, P n) -> has_unique_least_element le P.
Proof.
  intros P Pdec (n0,HPn0).
  assert
    (forall n, (exists n', n'<n /\ P n' /\ forall n'', P n'' -> n'<=n'')
      \/(forall n', P n' -> n<=n')).
  induction n.
  right.
  intros n' Hn'.
  apply le_O_n.
  destruct IHn.
  left; destruct H as (n', (Hlt', HPn')).
  exists n'; split.
  apply lt_S; assumption.
  assumption.
  destruct (Pdec n).
  left; exists n; split.
  apply lt_n_Sn.
  split; assumption.
  right.
  intros n' Hltn'.
  destruct (le_lt_eq_dec n n') as [Hltn|Heqn].
  apply H; assumption.
  assumption.
  destruct H0.
  rewrite Heqn; assumption.
  destruct (H n0) as [(n,(Hltn,(Hmin,Huniqn)))|]; [exists n | exists n0];
    repeat split;
      assumption || intros n' (HPn',Hminn'); apply le_antisym; auto.
Qed.

Definition FunctionalChoice_on_rel (A B:Type) (R:A->B->Prop) :=
  (forall x:A, exists y : B, R x y) ->
  exists f : A -> B, (forall x:A, R x (f x)).

Lemma classical_denumerable_description_imp_fun_choice :
  forall A:Type,
    FunctionalRelReification_on A nat ->
    forall R:A->nat->Prop,
      (forall x y, decidable (R x y)) -> FunctionalChoice_on_rel R.
Proof.
  intros A Descr.
  red in |- *; intros R Rdec H.
  set (R':= fun x y => R x y /\ forall y', R x y' -> y <= y').
  destruct (Descr R') as (f,Hf).
  intro x.
  apply (dec_inh_nat_subset_has_unique_least_element (R x)).
    apply Rdec.
    apply (H x).
    exists f.
    intros x.
    destruct (Hf x) as (Hfx,_).
    assumption.
Qed.

Choice on dependent and non dependent function types are equivalent


Choice on dependent and non dependent function types are equivalent


Definition DependentFunctionalChoice_on (A:Type) (B:A -> Type) :=
  forall R:forall x:A, B x -> Prop,
    (forall x:A, exists y : B x, R x y) ->
    (exists f : (forall x:A, B x), forall x:A, R x (f x)).

Notation DependentFunctionalChoice :=
  (forall A (B:A->Type), DependentFunctionalChoice_on B).

The easy part

Theorem dep_non_dep_functional_choice :
  DependentFunctionalChoice -> FunctionalChoice.
Proof.
  intros AC_depfun A B R H.
  destruct (AC_depfun A (fun _ => B) R H) as (f,Hf).
  exists f; trivial.
Qed.

Deriving choice on product types requires some computation on singleton propositional types, so we need computational conjunction projections and dependent elimination of conjunction and equality

Scheme and_indd := Induction for and Sort Prop.
Scheme eq_indd := Induction for eq Sort Prop.

Definition proj1_inf (A B:Prop) (p : A/\B) :=
  let (a,b) := p in a.

Theorem non_dep_dep_functional_choice :
  FunctionalChoice -> DependentFunctionalChoice.
Proof.
  intros AC_fun A B R H.
  pose (B' := { x:A & B x }).
  pose (R' := fun (x:A) (y:B') => projT1 y = x /\ R (projT1 y) (projT2 y)).
  destruct (AC_fun A B' R') as (f,Hf).
  intros x. destruct (H x) as (y,Hy).
  exists (existT (fun x => B x) x y). split; trivial.
  exists (fun x => eq_rect _ _ (projT2 (f x)) _ (proj1_inf (Hf x))).
  intro x; destruct (Hf x) as (Heq,HR) using and_indd.
  destruct (f x); simpl in *.
  destruct Heq using eq_indd; trivial.
Qed.

Reification of dependent and non dependent functional relation are equivalent


Definition DependentFunctionalRelReification_on (A:Type) (B:A -> Type) :=
  forall (R:forall x:A, B x -> Prop),
    (forall x:A, exists! y : B x, R x y) ->
    (exists f : (forall x:A, B x), forall x:A, R x (f x)).

Notation DependentFunctionalRelReification :=
  (forall A (B:A->Type), DependentFunctionalRelReification_on B).

The easy part

Theorem dep_non_dep_functional_rel_reification :
  DependentFunctionalRelReification -> FunctionalRelReification.
Proof.
  intros DepFunReify A B R H.
  destruct (DepFunReify A (fun _ => B) R H) as (f,Hf).
  exists f; trivial.
Qed.

Deriving choice on product types requires some computation on singleton propositional types, so we need computational conjunction projections and dependent elimination of conjunction and equality

Theorem non_dep_dep_functional_rel_reification :
  FunctionalRelReification -> DependentFunctionalRelReification.
Proof.
  intros AC_fun A B R H.
  pose (B' := { x:A & B x }).
  pose (R' := fun (x:A) (y:B') => projT1 y = x /\ R (projT1 y) (projT2 y)).
  destruct (AC_fun A B' R') as (f,Hf).
  intros x. destruct (H x) as (y,(Hy,Huni)).
  exists (existT (fun x => B x) x y). repeat split; trivial.
  intros (x',y') (Heqx',Hy').
  simpl in *.
  destruct Heqx'.
  rewrite (Huni y'); trivial.
  exists (fun x => eq_rect _ _ (projT2 (f x)) _ (proj1_inf (Hf x))).
  intro x; destruct (Hf x) as (Heq,HR) using and_indd.
  destruct (f x); simpl in *.
  destruct Heq using eq_indd; trivial.
Qed.

Non contradiction of constructive descriptions wrt functional axioms of choice


Non contradiction of indefinite description


Lemma relative_non_contradiction_of_indefinite_desc :
  (ConstructiveIndefiniteDescription -> False)
  -> (FunctionalChoice -> False).
Proof.
  intros H AC_fun.
  assert (AC_depfun := non_dep_dep_functional_choice AC_fun).
  pose (A0 := { A:Type & { P:A->Prop & exists x, P x }}).
  pose (B0 := fun x:A0 => projT1 x).
  pose (R0 := fun x:A0 => fun y:B0 x => projT1 (projT2 x) y).
  pose (H0 := fun x:A0 => projT2 (projT2 x)).
  destruct (AC_depfun A0 B0 R0 H0) as (f, Hf).
  apply H.
  intros A P H'.
  exists (f (existT (fun _ => sigT _) A
    (existT (fun P => exists x, P x) P H'))).
  pose (Hf' :=
    Hf (existT (fun _ => sigT _) A
      (existT (fun P => exists x, P x) P H'))).
  assumption.
Qed.

Lemma constructive_indefinite_descr_fun_choice :
  ConstructiveIndefiniteDescription -> FunctionalChoice.
Proof.
  intros IndefDescr A B R H.
  exists (fun x => proj1_sig (IndefDescr B (R x) (H x))).
  intro x.
  apply (proj2_sig (IndefDescr B (R x) (H x))).
Qed.

Non contradiction of definite description


Lemma relative_non_contradiction_of_definite_descr :
  (ConstructiveDefiniteDescription -> False)
  -> (FunctionalRelReification -> False).
Proof.
  intros H FunReify.
  assert (DepFunReify := non_dep_dep_functional_rel_reification FunReify).
  pose (A0 := { A:Type & { P:A->Prop & exists! x, P x }}).
  pose (B0 := fun x:A0 => projT1 x).
  pose (R0 := fun x:A0 => fun y:B0 x => projT1 (projT2 x) y).
  pose (H0 := fun x:A0 => projT2 (projT2 x)).
  destruct (DepFunReify A0 B0 R0 H0) as (f, Hf).
  apply H.
  intros A P H'.
  exists (f (existT (fun _ => sigT _) A
    (existT (fun P => exists! x, P x) P H'))).
  pose (Hf' :=
    Hf (existT (fun _ => sigT _) A
      (existT (fun P => exists! x, P x) P H'))).
  assumption.
Qed.

Lemma constructive_definite_descr_fun_reification :
  ConstructiveDefiniteDescription -> FunctionalRelReification.
Proof.
  intros DefDescr A B R H.
  exists (fun x => proj1_sig (DefDescr B (R x) (H x))).
  intro x.
  apply (proj2_sig (DefDescr B (R x) (H x))).
Qed.

Excluded-middle + definite description => computational excluded-middle


The idea for the following proof comes from ChicliPottierSimpson02

Classical logic and axiom of unique choice (i.e. functional relation reification), as shown in ChicliPottierSimpson02, implies the double-negation of excluded-middle in Set (which is incompatible with the impredicativity of Set).

We adapt the proof to show that constructive definite description transports excluded-middle from Prop to Set.

ChicliPottierSimpson02 Laurent Chicli, Loïc Pottier, Carlos Simpson, Mathematical Quotients and Quotient Types in Coq, Proceedings of TYPES 2002, Lecture Notes in Computer Science 2646, Springer Verlag.

Require Import Setoid.

Theorem constructive_definite_descr_excluded_middle :
  ConstructiveDefiniteDescription ->
  (forall P:Prop, P \/ ~ P) -> (forall P:Prop, {P} + {~ P}).
Proof.
  intros Descr EM P.
  pose (select := fun b:bool => if b then P else ~P).
  assert { b:bool | select b } as ([|],HP).
  apply Descr.
  rewrite <- unique_existence; split.
  destruct (EM P).
  exists true; trivial.
  exists false; trivial.
  intros [|] [|] H1 H2; simpl in *; reflexivity || contradiction.
  left; trivial.
  right; trivial.
Qed.