Library Coq.ZArith.ZArith_dec

Require Import Sumbool.

Require Import BinInt.
Require Import Zorder.
Require Import Zcompare.
Open Local Scope Z_scope.

Lemma Dcompare_inf : forall r:comparison, {r = Eq} + {r = Lt} + {r = Gt}.
Proof.
  simple induction r; auto with arith.
Defined.

Lemma Zcompare_rec :
  forall (P:Set) (n m:Z),
    ((n ?= m) = Eq -> P) -> ((n ?= m) = Lt -> P) -> ((n ?= m) = Gt -> P) -> P.
Proof.
  intros P x y H1 H2 H3.
  elim (Dcompare_inf (x ?= y)).
  intro H. elim H; auto with arith. auto with arith.
Defined.

Section decidability.

  Variables x y : Z.

Decidability of equality on binary integers


  Definition Z_eq_dec : {x = y} + {x <> y}.
  Proof.
    apply Zcompare_rec with (n := x) (m := y).
    intro. left. elim (Zcompare_Eq_iff_eq x y); auto with arith.
    intro H3. right. elim (Zcompare_Eq_iff_eq x y). intros H1 H2. unfold not in |- *. intro H4.
    rewrite (H2 H4) in H3. discriminate H3.
    intro H3. right. elim (Zcompare_Eq_iff_eq x y). intros H1 H2. unfold not in |- *. intro H4.
    rewrite (H2 H4) in H3. discriminate H3.
  Defined.

Decidability of order on binary integers


  Definition Z_lt_dec : {x < y} + {~ x < y}.
  Proof.
    unfold Zlt in |- *.
    apply Zcompare_rec with (n := x) (m := y); intro H.
    right. rewrite H. discriminate.
    left; assumption.
    right. rewrite H. discriminate.
  Defined.

  Definition Z_le_dec : {x <= y} + {~ x <= y}.
  Proof.
    unfold Zle in |- *.
    apply Zcompare_rec with (n := x) (m := y); intro H.
    left. rewrite H. discriminate.
    left. rewrite H. discriminate.
    right. tauto.
  Defined.

  Definition Z_gt_dec : {x > y} + {~ x > y}.
  Proof.
    unfold Zgt in |- *.
    apply Zcompare_rec with (n := x) (m := y); intro H.
    right. rewrite H. discriminate.
    right. rewrite H. discriminate.
    left; assumption.
  Defined.

  Definition Z_ge_dec : {x >= y} + {~ x >= y}.
  Proof.
    unfold Zge in |- *.
    apply Zcompare_rec with (n := x) (m := y); intro H.
    left. rewrite H. discriminate.
    right. tauto.
    left. rewrite H. discriminate.
  Defined.

  Definition Z_lt_ge_dec : {x < y} + {x >= y}.
  Proof.
    exact Z_lt_dec.
  Defined.

  Lemma Z_lt_le_dec : {x < y} + {y <= x}.
  Proof.
    intros.
    elim Z_lt_ge_dec.
    intros; left; assumption.
    intros; right; apply Zge_le; assumption.
  Defined.

  Definition Z_le_gt_dec : {x <= y} + {x > y}.
  Proof.
    elim Z_le_dec; auto with arith.
    intro. right. apply Znot_le_gt; auto with arith.
  Defined.

  Definition Z_gt_le_dec : {x > y} + {x <= y}.
  Proof.
    exact Z_gt_dec.
  Defined.

  Definition Z_ge_lt_dec : {x >= y} + {x < y}.
  Proof.
    elim Z_ge_dec; auto with arith.
    intro. right. apply Znot_ge_lt; auto with arith.
  Defined.

  Definition Z_le_lt_eq_dec : x <= y -> {x < y} + {x = y}.
  Proof.
    intro H.
    apply Zcompare_rec with (n := x) (m := y).
    intro. right. elim (Zcompare_Eq_iff_eq x y); auto with arith.
    intro. left. elim (Zcompare_Eq_iff_eq x y); auto with arith.
    intro H1. absurd (x > y); auto with arith.
  Defined.

End decidability.

Cotransitivity of order on binary integers


Lemma Zlt_cotrans : forall n m:Z, n < m -> forall p:Z, {n < p} + {p < m}.
Proof.
  intros x y H z.
  case (Z_lt_ge_dec x z).
  intro.
  left.
  assumption.
  intro.
  right.
  apply Zle_lt_trans with (m := x).
  apply Zge_le.
  assumption.
  assumption.
Defined.

Lemma Zlt_cotrans_pos : forall n m:Z, 0 < n + m -> {0 < n} + {0 < m}.
Proof.
  intros x y H.
  case (Zlt_cotrans 0 (x + y) H x).
  intro.
  left.
  assumption.
  intro.
  right.
  apply Zplus_lt_reg_l with (p := x).
  rewrite Zplus_0_r.
  assumption.
Defined.

Lemma Zlt_cotrans_neg : forall n m:Z, n + m < 0 -> {n < 0} + {m < 0}.
Proof.
  intros x y H; case (Zlt_cotrans (x + y) 0 H x); intro Hxy;
    [ right; apply Zplus_lt_reg_l with (p := x); rewrite Zplus_0_r | left ];
    assumption.
Defined.

Lemma not_Zeq_inf : forall n m:Z, n <> m -> {n < m} + {m < n}.
Proof.
  intros x y H.
  case Z_lt_ge_dec with x y.
  intro.
  left.
  assumption.
  intro H0.
  generalize (Zge_le _ _ H0).
  intro.
  case (Z_le_lt_eq_dec _ _ H1).
  intro.
  right.
  assumption.
  intro.
  apply False_rec.
  apply H.
  symmetry in |- *.
  assumption.
Defined.

Lemma Z_dec : forall n m:Z, {n < m} + {n > m} + {n = m}.
Proof.
  intros x y.
  case (Z_lt_ge_dec x y).
  intro H.
  left.
  left.
  assumption.
  intro H.
  generalize (Zge_le _ _ H).
  intro H0.
  case (Z_le_lt_eq_dec y x H0).
  intro H1.
  left.
  right.
  apply Zlt_gt.
  assumption.
  intro.
  right.
  symmetry in |- *.
  assumption.
Defined.

Lemma Z_dec' : forall n m:Z, {n < m} + {m < n} + {n = m}.
Proof.
  intros x y.
  case (Z_eq_dec x y); intro H;
    [ right; assumption | left; apply (not_Zeq_inf _ _ H) ].
Defined.

Definition Z_zerop : forall x:Z, {x = 0} + {x <> 0}.
Proof.
  exact (fun x:Z => Z_eq_dec x 0).
Defined.

Definition Z_notzerop (x:Z) := sumbool_not _ _ (Z_zerop x).

Definition Z_noteq_dec (x y:Z) := sumbool_not _ _ (Z_eq_dec x y).