Library Coq.ZArith.Zmisc
Require Import BinInt.
Require Import Zcompare.
Require Import Zorder.
Require Import Bool.
Open Local Scope Z_scope.
Iterators
n
th iteration of the function f
Fixpoint iter_nat (n:nat) (A:Set) (f:A -> A) (x:A) {struct n} : A :=
match n with
| O => x
| S n' => f (iter_nat n' A f x)
end.
Fixpoint iter_pos (n:positive) (A:Set) (f:A -> A) (x:A) {struct n} : A :=
match n with
| xH => f x
| xO n' => iter_pos n' A f (iter_pos n' A f x)
| xI n' => f (iter_pos n' A f (iter_pos n' A f x))
end.
Definition iter (n:Z) (A:Set) (f:A -> A) (x:A) :=
match n with
| Z0 => x
| Zpos p => iter_pos p A f x
| Zneg p => x
end.
Theorem iter_nat_plus :
forall (n m:nat) (A:Set) (f:A -> A) (x:A),
iter_nat (n + m) A f x = iter_nat n A f (iter_nat m A f x).
Proof.
simple induction n;
[ simpl in |- *; auto with arith
| intros; simpl in |- *; apply f_equal with (f := f); apply H ].
Qed.
Theorem iter_nat_of_P :
forall (p:positive) (A:Set) (f:A -> A) (x:A),
iter_pos p A f x = iter_nat (nat_of_P p) A f x.
Proof.
intro n; induction n as [p H| p H| ];
[ intros; simpl in |- *; rewrite (H A f x);
rewrite (H A f (iter_nat (nat_of_P p) A f x));
rewrite (ZL6 p); symmetry in |- *; apply f_equal with (f := f);
apply iter_nat_plus
| intros; unfold nat_of_P in |- *; simpl in |- *; rewrite (H A f x);
rewrite (H A f (iter_nat (nat_of_P p) A f x));
rewrite (ZL6 p); symmetry in |- *; apply iter_nat_plus
| simpl in |- *; auto with arith ].
Qed.
Theorem iter_pos_plus :
forall (p q:positive) (A:Set) (f:A -> A) (x:A),
iter_pos (p + q) A f x = iter_pos p A f (iter_pos q A f x).
Proof.
intros n m; intros.
rewrite (iter_nat_of_P m A f x).
rewrite (iter_nat_of_P n A f (iter_nat (nat_of_P m) A f x)).
rewrite (iter_nat_of_P (n + m) A f x).
rewrite (nat_of_P_plus_morphism n m).
apply iter_nat_plus.
Qed.
Preservation of invariants : if
f : A->A
preserves the invariant Inv
,
then the iterates of f
also preserve it.
Theorem iter_nat_invariant :
forall (n:nat) (A:Set) (f:A -> A) (Inv:A -> Prop),
(forall x:A, Inv x -> Inv (f x)) ->
forall x:A, Inv x -> Inv (iter_nat n A f x).
Proof.
simple induction n; intros;
[ trivial with arith
| simpl in |- *; apply H0 with (x := iter_nat n0 A f x); apply H;
trivial with arith ].
Qed.
Theorem iter_pos_invariant :
forall (p:positive) (A:Set) (f:A -> A) (Inv:A -> Prop),
(forall x:A, Inv x -> Inv (f x)) ->
forall x:A, Inv x -> Inv (iter_pos p A f x).
Proof.
intros; rewrite iter_nat_of_P; apply iter_nat_invariant; trivial with arith.
Qed.