Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (7984 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (401 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (5228 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (292 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (184 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (1519 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (85 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (275 entries)

S (lemma)

same_relation_is_equivalence [in Coq.Sets.Relations_1_facts]
scal_sum [in Coq.Reals.PartSum]
seq_congr [in Coq.Sets.Uniset]
seq_left [in Coq.Sets.Uniset]
seq_length [in Coq.Lists.List]
seq_nth [in Coq.Lists.List]
seq_refl [in Coq.Sets.Uniset]
seq_right [in Coq.Sets.Uniset]
seq_shift [in Coq.Lists.List]
seq_sym [in Coq.Sets.Uniset]
seq_trans [in Coq.Sets.Uniset]
setcover_intro [in Coq.Sets.Powerset_facts]
setcover_inv [in Coq.Sets.Powerset_Classical_facts]
Setminus_intro [in Coq.Sets.Constructive_sets]
setoid_rewrite [in Coq.Setoids.Setoid]
set_add_elim [in Coq.Lists.ListSet]
set_add_elim2 [in Coq.Lists.ListSet]
set_add_intro [in Coq.Lists.ListSet]
set_add_intro1 [in Coq.Lists.ListSet]
set_add_intro2 [in Coq.Lists.ListSet]
set_add_not_empty [in Coq.Lists.ListSet]
set_diff_elim1 [in Coq.Lists.ListSet]
set_diff_elim2 [in Coq.Lists.ListSet]
set_diff_intro [in Coq.Lists.ListSet]
set_diff_trivial [in Coq.Lists.ListSet]
set_inter_elim [in Coq.Lists.ListSet]
set_inter_elim1 [in Coq.Lists.ListSet]
set_inter_elim2 [in Coq.Lists.ListSet]
set_inter_intro [in Coq.Lists.ListSet]
set_In_dec [in Coq.Lists.ListSet]
set_mem_complete1 [in Coq.Lists.ListSet]
set_mem_complete2 [in Coq.Lists.ListSet]
set_mem_correct1 [in Coq.Lists.ListSet]
set_mem_correct2 [in Coq.Lists.ListSet]
set_mem_ind [in Coq.Lists.ListSet]
set_mem_ind2 [in Coq.Lists.ListSet]
set_union_elim [in Coq.Lists.ListSet]
set_union_emptyL [in Coq.Lists.ListSet]
set_union_emptyR [in Coq.Lists.ListSet]
set_union_intro [in Coq.Lists.ListSet]
set_union_intro1 [in Coq.Lists.ListSet]
set_union_intro2 [in Coq.Lists.ListSet]
SFL_continuity [in Coq.Reals.PSeries_reg]
SFL_continuity_pt [in Coq.Reals.PSeries_reg]
shift_nat_correct [in Coq.ZArith.Zpower]
shift_nat_plus [in Coq.ZArith.Zpower]
shift_pos_correct [in Coq.ZArith.Zpower]
shift_pos_nat [in Coq.ZArith.Zpower]
sigma_diff [in Coq.Reals.Rsigma]
sigma_diff_neg [in Coq.Reals.Rsigma]
sigma_eq_arg [in Coq.Reals.Rsigma]
sigma_first [in Coq.Reals.Rsigma]
sigma_last [in Coq.Reals.Rsigma]
sigma_split [in Coq.Reals.Rsigma]
Simplify_add [in Coq.Sets.Powerset_Classical_facts]
simpl_cos_n [in Coq.Reals.Rtrigo_def]
simpl_fact [in Coq.Reals.Rfunctions]
simpl_sin_n [in Coq.Reals.Rtrigo_def]
SIN [in Coq.Reals.Rtrigo]
sincl_add_x [in Coq.Sets.Powerset_Classical_facts]
Singleton_atomic [in Coq.Sets.Powerset_Classical_facts]
singleton_choice [in Coq.Logic.ClassicalChoice]
Singleton_intro [in Coq.Sets.Constructive_sets]
Singleton_inv [in Coq.Sets.Constructive_sets]
Singleton_is_finite [in Coq.Sets.Finite_sets_facts]
single_limit [in Coq.Reals.Rlimit]
single_z_r_R1 [in Coq.Reals.RIneq]
singlx [in Coq.Sets.Powerset_facts]
sinh_0 [in Coq.Reals.Rtrigo_def]
sin2 [in Coq.Reals.Rtrigo]
sin2_cos2 [in Coq.Reals.Rtrigo]
sin3PI4 [in Coq.Reals.Rtrigo_calc]
sin_antisym [in Coq.Reals.Rtrigo_def]
sin_bound [in Coq.Reals.Rtrigo_alt]
SIN_bound [in Coq.Reals.Rtrigo]
sin_cos [in Coq.Reals.Rtrigo]
sin_cos5PI4 [in Coq.Reals.Rtrigo_calc]
sin_cos_PI4 [in Coq.Reals.Rtrigo_calc]
sin_decreasing_0 [in Coq.Reals.Rtrigo]
sin_decreasing_1 [in Coq.Reals.Rtrigo]
sin_decr_0 [in Coq.Reals.Rtrigo]
sin_decr_1 [in Coq.Reals.Rtrigo]
sin_eq_O_2PI_0 [in Coq.Reals.Rtrigo]
sin_eq_O_2PI_1 [in Coq.Reals.Rtrigo]
sin_eq_0_0 [in Coq.Reals.Rtrigo]
sin_eq_0_1 [in Coq.Reals.Rtrigo]
sin_ge_0 [in Coq.Reals.Rtrigo]
sin_gt_0 [in Coq.Reals.Rtrigo]
sin_increasing_0 [in Coq.Reals.Rtrigo]
sin_increasing_1 [in Coq.Reals.Rtrigo]
sin_incr_0 [in Coq.Reals.Rtrigo]
sin_incr_1 [in Coq.Reals.Rtrigo]
sin_lb_ge_0 [in Coq.Reals.Rtrigo_calc]
sin_lb_gt_0 [in Coq.Reals.Rtrigo]
sin_le_0 [in Coq.Reals.Rtrigo]
sin_lt_0 [in Coq.Reals.Rtrigo]
sin_lt_0_var [in Coq.Reals.Rtrigo]
sin_minus [in Coq.Reals.Rtrigo]
sin_neg [in Coq.Reals.Rtrigo]
sin_no_R0 [in Coq.Reals.Rtrigo_def]
sin_period [in Coq.Reals.Rtrigo]
sin_PI [in Coq.Reals.Rtrigo]
sin_PI3 [in Coq.Reals.Rtrigo_calc]
sin_PI3_cos_PI6 [in Coq.Reals.Rtrigo_calc]
sin_PI4 [in Coq.Reals.Rtrigo_calc]
sin_PI6 [in Coq.Reals.Rtrigo_calc]
sin_PI6_cos_PI3 [in Coq.Reals.Rtrigo_calc]
sin_PI_x [in Coq.Reals.Rtrigo]
sin_plus [in Coq.Reals.Rtrigo]
sin_shift [in Coq.Reals.Rtrigo]
sin_0 [in Coq.Reals.Rtrigo_def]
sin_2a [in Coq.Reals.Rtrigo]
sin_2PI [in Coq.Reals.Rtrigo]
sin_2PI3 [in Coq.Reals.Rtrigo_calc]
sin_3PI2 [in Coq.Reals.Rtrigo_calc]
sin_5PI4 [in Coq.Reals.Rtrigo_calc]
SortA_app [in Coq.Lists.SetoidList]
SortA_InfA_InA [in Coq.Lists.SetoidList]
SortA_NoDupA [in Coq.Lists.SetoidList]
sort_inv [in Coq.Sorting.Sorting]
sort_rec [in Coq.Sorting.Sorting]
split_combine [in Coq.Lists.List]
split_length_l [in Coq.Lists.List]
split_length_r [in Coq.Lists.List]
split_nth [in Coq.Lists.List]
sqrt2_neq_0 [in Coq.Reals.Rtrigo_calc]
sqrt3_2_neq_0 [in Coq.Reals.Rtrigo_calc]
sqrt_cauchy [in Coq.Reals.R_sqrt]
sqrt_continuity_pt [in Coq.Reals.Sqrt_reg]
sqrt_continuity_pt_R1 [in Coq.Reals.Sqrt_reg]
sqrt_def [in Coq.Reals.R_sqrt]
sqrt_div [in Coq.Reals.R_sqrt]
sqrt_eq_0 [in Coq.Reals.R_sqrt]
sqrt_inj [in Coq.Reals.R_sqrt]
sqrt_lem_0 [in Coq.Reals.R_sqrt]
sqrt_lem_1 [in Coq.Reals.R_sqrt]
sqrt_less [in Coq.Reals.R_sqrt]
sqrt_le_0 [in Coq.Reals.R_sqrt]
sqrt_le_1 [in Coq.Reals.R_sqrt]
sqrt_lt_R0 [in Coq.Reals.R_sqrt]
sqrt_lt_0 [in Coq.Reals.R_sqrt]
sqrt_lt_1 [in Coq.Reals.R_sqrt]
sqrt_more [in Coq.Reals.R_sqrt]
sqrt_mult [in Coq.Reals.R_sqrt]
sqrt_positivity [in Coq.Reals.R_sqrt]
sqrt_Rsqr [in Coq.Reals.R_sqrt]
sqrt_Rsqr_abs [in Coq.Reals.R_sqrt]
sqrt_sqrt [in Coq.Reals.R_sqrt]
sqrt_square [in Coq.Reals.R_sqrt]
sqrt_var_maj [in Coq.Reals.Sqrt_reg]
sqrt_0 [in Coq.Reals.R_sqrt]
sqrt_1 [in Coq.Reals.R_sqrt]
sqr_pos [in Coq.ZArith.Zcomplements]
Sstar_contains_Rstar [in Coq.Sets.Relations_2_facts]
star_monotone [in Coq.Sets.Relations_2_facts]
StepFun_P1 [in Coq.Reals.RiemannInt_SF]
StepFun_P10 [in Coq.Reals.RiemannInt_SF]
StepFun_P11 [in Coq.Reals.RiemannInt_SF]
StepFun_P12 [in Coq.Reals.RiemannInt_SF]
StepFun_P13 [in Coq.Reals.RiemannInt_SF]
StepFun_P14 [in Coq.Reals.RiemannInt_SF]
StepFun_P15 [in Coq.Reals.RiemannInt_SF]
StepFun_P16 [in Coq.Reals.RiemannInt_SF]
StepFun_P17 [in Coq.Reals.RiemannInt_SF]
StepFun_P18 [in Coq.Reals.RiemannInt_SF]
StepFun_P19 [in Coq.Reals.RiemannInt_SF]
StepFun_P2 [in Coq.Reals.RiemannInt_SF]
StepFun_P20 [in Coq.Reals.RiemannInt_SF]
StepFun_P21 [in Coq.Reals.RiemannInt_SF]
StepFun_P22 [in Coq.Reals.RiemannInt_SF]
StepFun_P23 [in Coq.Reals.RiemannInt_SF]
StepFun_P24 [in Coq.Reals.RiemannInt_SF]
StepFun_P25 [in Coq.Reals.RiemannInt_SF]
StepFun_P26 [in Coq.Reals.RiemannInt_SF]
StepFun_P27 [in Coq.Reals.RiemannInt_SF]
StepFun_P28 [in Coq.Reals.RiemannInt_SF]
StepFun_P29 [in Coq.Reals.RiemannInt_SF]
StepFun_P3 [in Coq.Reals.RiemannInt_SF]
StepFun_P30 [in Coq.Reals.RiemannInt_SF]
StepFun_P31 [in Coq.Reals.RiemannInt_SF]
StepFun_P32 [in Coq.Reals.RiemannInt_SF]
StepFun_P33 [in Coq.Reals.RiemannInt_SF]
StepFun_P34 [in Coq.Reals.RiemannInt_SF]
StepFun_P35 [in Coq.Reals.RiemannInt_SF]
StepFun_P36 [in Coq.Reals.RiemannInt_SF]
StepFun_P37 [in Coq.Reals.RiemannInt_SF]
StepFun_P38 [in Coq.Reals.RiemannInt_SF]
StepFun_P39 [in Coq.Reals.RiemannInt_SF]
StepFun_P4 [in Coq.Reals.RiemannInt_SF]
StepFun_P40 [in Coq.Reals.RiemannInt_SF]
StepFun_P41 [in Coq.Reals.RiemannInt_SF]
StepFun_P42 [in Coq.Reals.RiemannInt_SF]
StepFun_P43 [in Coq.Reals.RiemannInt_SF]
StepFun_P44 [in Coq.Reals.RiemannInt_SF]
StepFun_P45 [in Coq.Reals.RiemannInt_SF]
StepFun_P46 [in Coq.Reals.RiemannInt_SF]
StepFun_P5 [in Coq.Reals.RiemannInt_SF]
StepFun_P6 [in Coq.Reals.RiemannInt_SF]
StepFun_P7 [in Coq.Reals.RiemannInt_SF]
StepFun_P8 [in Coq.Reals.RiemannInt_SF]
StepFun_P9 [in Coq.Reals.RiemannInt_SF]
Streicher_K__eq_rect_eq [in Coq.Logic.EqdepFacts]
strictincreasing_strictdecreasing_opp [in Coq.Reals.MVT]
Strict_Included_intro [in Coq.Sets.Constructive_sets]
Strict_Included_inv [in Coq.Sets.Classical_sets]
Strict_Included_strict [in Coq.Sets.Constructive_sets]
Strict_inclusion_is_transitive [in Coq.Sets.Powerset]
Strict_inclusion_is_transitive_with_inclusion [in Coq.Sets.Powerset]
Strict_inclusion_is_transitive_with_inclusion_left [in Coq.Sets.Powerset]
Strict_Rel_is_Strict_Included [in Coq.Sets.Powerset]
Strict_Rel_Transitive [in Coq.Sets.Partial_Order]
Strict_Rel_Transitive_with_Rel [in Coq.Sets.Partial_Order]
Strict_Rel_Transitive_with_Rel_left [in Coq.Sets.Partial_Order]
Strict_super_set_contains_new_element [in Coq.Sets.Classical_sets]
Strong_confluence [in Coq.Sets.Relations_3_facts]
Strong_confluence_direct [in Coq.Sets.Relations_3_facts]
Str_nth_plus [in Coq.Lists.Streams]
Str_nth_tl_plus [in Coq.Lists.Streams]
SubEqui_P1 [in Coq.Reals.RiemannInt]
SubEqui_P2 [in Coq.Reals.RiemannInt]
SubEqui_P3 [in Coq.Reals.RiemannInt]
SubEqui_P4 [in Coq.Reals.RiemannInt]
SubEqui_P5 [in Coq.Reals.RiemannInt]
SubEqui_P6 [in Coq.Reals.RiemannInt]
SubEqui_P7 [in Coq.Reals.RiemannInt]
SubEqui_P8 [in Coq.Reals.RiemannInt]
SubEqui_P9 [in Coq.Reals.RiemannInt]
substring_correct1 [in Coq.Strings.String]
substring_correct2 [in Coq.Strings.String]
Subtract_intro [in Coq.Sets.Classical_sets]
Subtract_inv [in Coq.Sets.Classical_sets]
Sub_Add_new [in Coq.Sets.Powerset_Classical_facts]
succ_plus_discr [in Coq.Arith.Plus]
sum_cte [in Coq.Reals.PartSum]
sum_cv_maj [in Coq.Reals.PartSum]
sum_decomposition [in Coq.Reals.PartSum]
sum_eq [in Coq.Reals.PartSum]
sum_eq_R0 [in Coq.Reals.PartSum]
sum_f_R0_triangle [in Coq.Reals.Rfunctions]
sum_growing [in Coq.Reals.PartSum]
sum_incr [in Coq.Reals.PartSum]
sum_inequa_Rle_lt [in Coq.Reals.RIneq]
sum_maj1 [in Coq.Reals.SeqSeries]
sum_N_predN [in Coq.Reals.Cauchy_prod]
sum_plus [in Coq.Reals.Cauchy_prod]
sum_Rle [in Coq.Reals.PartSum]
surjective_pairing [in Coq.Init.Datatypes]
swap_Acc [in Coq.Wellfounded.Lexicographic_Product]
sym_eq [in Coq.Init.Logic]
sym_EqSt [in Coq.Lists.Streams]
sym_id [in Coq.Init.Logic_Type]
sym_JMeq [in Coq.Logic.JMeq]
sym_not_eq [in Coq.Init.Logic]
sym_not_id [in Coq.Init.Logic_Type]
S_INR [in Coq.Reals.RIneq]
S_O_plus_INR [in Coq.Reals.RIneq]
S_pred [in Coq.Arith.Lt]
S_to_Finite_set.add_Add [in Coq.FSets.FSetToFiniteSet]
S_to_Finite_set.Add_Add [in Coq.FSets.FSetToFiniteSet]
S_to_Finite_set.Empty_Empty_set [in Coq.FSets.FSetToFiniteSet]
S_to_Finite_set.empty_Empty_Set [in Coq.FSets.FSetToFiniteSet]
S_to_Finite_set.Equal_Same_set [in Coq.FSets.FSetToFiniteSet]
S_to_Finite_set.inter_Intersection [in Coq.FSets.FSetToFiniteSet]
S_to_Finite_set.In_In [in Coq.FSets.FSetToFiniteSet]
S_to_Finite_set.mkEns_cardinal [in Coq.FSets.FSetToFiniteSet]
S_to_Finite_set.mkEns_Finite [in Coq.FSets.FSetToFiniteSet]
S_to_Finite_set.remove_Subtract [in Coq.FSets.FSetToFiniteSet]
S_to_Finite_set.singleton_Singleton [in Coq.FSets.FSetToFiniteSet]
S_to_Finite_set.Subset_Included [in Coq.FSets.FSetToFiniteSet]
S_to_Finite_set.union_Union [in Coq.FSets.FSetToFiniteSet]



Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (7984 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (401 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (5228 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (292 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (184 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (1519 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (85 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (275 entries)