Library Coq.Reals.Rtrigo_reg
Require Import Rbase.
Require Import Rfunctions.
Require Import SeqSeries.
Require Import Rtrigo.
Require Import Ranalysis1.
Require Import PSeries_reg.
Open Local Scope nat_scope.
Open Local Scope R_scope.
Lemma CVN_R_cos :
forall fn:nat -> R -> R,
fn = (fun (N:nat) (x:R) => (-1) ^ N / INR (fact (2 * N)) * x ^ (2 * N)) ->
CVN_R fn.
Proof.
unfold CVN_R in |- *; intros.
cut ((r:R) <> 0).
intro hyp_r; unfold CVN_r in |- *.
apply existT with (fun n:nat => / INR (fact (2 * n)) * r ^ (2 * n)).
cut
(sigT
(fun l:R =>
Un_cv
(fun n:nat =>
sum_f_R0 (fun k:nat => Rabs (/ INR (fact (2 * k)) * r ^ (2 * k)))
n) l)).
intro X; elim X; intros.
apply existT with x.
split.
apply p.
intros; rewrite H; unfold Rdiv in |- *; do 2 rewrite Rabs_mult.
rewrite pow_1_abs; rewrite Rmult_1_l.
cut (0 < / INR (fact (2 * n))).
intro; rewrite (Rabs_right _ (Rle_ge _ _ (Rlt_le _ _ H1))).
apply Rmult_le_compat_l.
left; apply H1.
rewrite <- RPow_abs; apply pow_maj_Rabs.
rewrite Rabs_Rabsolu.
unfold Boule in H0; rewrite Rminus_0_r in H0.
left; apply H0.
apply Rinv_0_lt_compat; apply INR_fact_lt_0.
apply Alembert_C2.
intro; apply Rabs_no_R0.
apply prod_neq_R0.
apply Rinv_neq_0_compat.
apply INR_fact_neq_0.
apply pow_nonzero; assumption.
assert (H0 := Alembert_cos).
unfold cos_n in H0; unfold Un_cv in H0; unfold Un_cv in |- *; intros.
cut (0 < eps / Rsqr r).
intro; elim (H0 _ H2); intros N0 H3.
exists N0; intros.
unfold R_dist in |- *; assert (H5 := H3 _ H4).
unfold R_dist in H5;
replace
(Rabs
(Rabs (/ INR (fact (2 * S n)) * r ^ (2 * S n)) /
Rabs (/ INR (fact (2 * n)) * r ^ (2 * n)))) with
(Rsqr r *
Rabs ((-1) ^ S n / INR (fact (2 * S n)) / ((-1) ^ n / INR (fact (2 * n))))).
apply Rmult_lt_reg_l with (/ Rsqr r).
apply Rinv_0_lt_compat; apply Rsqr_pos_lt; assumption.
pattern (/ Rsqr r) at 1 in |- *; replace (/ Rsqr r) with (Rabs (/ Rsqr r)).
rewrite <- Rabs_mult; rewrite Rmult_minus_distr_l; rewrite Rmult_0_r;
rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_l; rewrite <- (Rmult_comm eps); apply H5.
unfold Rsqr in |- *; apply prod_neq_R0; assumption.
rewrite Rabs_Rinv.
rewrite Rabs_right.
reflexivity.
apply Rle_ge; apply Rle_0_sqr.
unfold Rsqr in |- *; apply prod_neq_R0; assumption.
rewrite (Rmult_comm (Rsqr r)); unfold Rdiv in |- *; repeat rewrite Rabs_mult;
rewrite Rabs_Rabsolu; rewrite pow_1_abs; rewrite Rmult_1_l;
repeat rewrite Rmult_assoc; apply Rmult_eq_compat_l.
rewrite Rabs_Rinv.
rewrite Rabs_mult; rewrite (pow_1_abs n); rewrite Rmult_1_l;
rewrite <- Rabs_Rinv.
rewrite Rinv_involutive.
rewrite Rinv_mult_distr.
rewrite Rabs_Rinv.
rewrite Rinv_involutive.
rewrite (Rmult_comm (Rabs (Rabs (r ^ (2 * S n))))); rewrite Rabs_mult;
rewrite Rabs_Rabsolu; rewrite Rmult_assoc; apply Rmult_eq_compat_l.
rewrite Rabs_Rinv.
do 2 rewrite Rabs_Rabsolu; repeat rewrite Rabs_right.
replace (r ^ (2 * S n)) with (r ^ (2 * n) * r * r).
repeat rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
unfold Rsqr in |- *; ring.
apply pow_nonzero; assumption.
replace (2 * S n)%nat with (S (S (2 * n))).
simpl in |- *; ring.
ring.
apply Rle_ge; apply pow_le; left; apply (cond_pos r).
apply Rle_ge; apply pow_le; left; apply (cond_pos r).
apply Rabs_no_R0; apply pow_nonzero; assumption.
apply Rabs_no_R0; apply INR_fact_neq_0.
apply INR_fact_neq_0.
apply Rabs_no_R0; apply Rinv_neq_0_compat; apply INR_fact_neq_0.
apply Rabs_no_R0; apply pow_nonzero; assumption.
apply INR_fact_neq_0.
apply Rinv_neq_0_compat; apply INR_fact_neq_0.
apply prod_neq_R0.
apply pow_nonzero; discrR.
apply Rinv_neq_0_compat; apply INR_fact_neq_0.
unfold Rdiv in |- *; apply Rmult_lt_0_compat.
apply H1.
apply Rinv_0_lt_compat; apply Rsqr_pos_lt; assumption.
assert (H0 := cond_pos r); red in |- *; intro; rewrite H1 in H0;
elim (Rlt_irrefl _ H0).
Qed.
Lemma continuity_cos : continuity cos.
Proof.
set (fn := fun (N:nat) (x:R) => (-1) ^ N / INR (fact (2 * N)) * x ^ (2 * N)).
cut (CVN_R fn).
intro; cut (forall x:R, sigT (fun l:R => Un_cv (fun N:nat => SP fn N x) l)).
intro cv; cut (forall n:nat, continuity (fn n)).
intro; cut (forall x:R, cos x = SFL fn cv x).
intro; cut (continuity (SFL fn cv) -> continuity cos).
intro; apply H1.
apply SFL_continuity; assumption.
unfold continuity in |- *; unfold continuity_pt in |- *;
unfold continue_in in |- *; unfold limit1_in in |- *;
unfold limit_in in |- *; simpl in |- *; unfold R_dist in |- *;
intros.
elim (H1 x _ H2); intros.
exists x0; intros.
elim H3; intros.
split.
apply H4.
intros; rewrite (H0 x); rewrite (H0 x1); apply H5; apply H6.
intro; unfold cos, SFL in |- *.
case (cv x); case (exist_cos (Rsqr x)); intros.
symmetry in |- *; eapply UL_sequence.
apply u.
unfold cos_in in c; unfold infinit_sum in c; unfold Un_cv in |- *; intros.
elim (c _ H0); intros N0 H1.
exists N0; intros.
unfold R_dist in H1; unfold R_dist, SP in |- *.
replace (sum_f_R0 (fun k:nat => fn k x) n) with
(sum_f_R0 (fun i:nat => cos_n i * Rsqr x ^ i) n).
apply H1; assumption.
apply sum_eq; intros.
unfold cos_n, fn in |- *; apply Rmult_eq_compat_l.
unfold Rsqr in |- *; rewrite pow_sqr; reflexivity.
intro; unfold fn in |- *;
replace (fun x:R => (-1) ^ n / INR (fact (2 * n)) * x ^ (2 * n)) with
(fct_cte ((-1) ^ n / INR (fact (2 * n))) * pow_fct (2 * n))%F;
[ idtac | reflexivity ].
apply continuity_mult.
apply derivable_continuous; apply derivable_const.
apply derivable_continuous; apply (derivable_pow (2 * n)).
apply CVN_R_CVS; apply X.
apply CVN_R_cos; unfold fn in |- *; reflexivity.
Qed.
Lemma continuity_sin : continuity sin.
Proof.
unfold continuity in |- *; intro.
assert (H0 := continuity_cos (PI / 2 - x)).
unfold continuity_pt in H0; unfold continue_in in H0; unfold limit1_in in H0;
unfold limit_in in H0; simpl in H0; unfold R_dist in H0;
unfold continuity_pt in |- *; unfold continue_in in |- *;
unfold limit1_in in |- *; unfold limit_in in |- *;
simpl in |- *; unfold R_dist in |- *; intros.
elim (H0 _ H); intros.
exists x0; intros.
elim H1; intros.
split.
assumption.
intros; rewrite <- (cos_shift x); rewrite <- (cos_shift x1); apply H3.
elim H4; intros.
split.
unfold D_x, no_cond in |- *; split.
trivial.
red in |- *; intro; unfold D_x, no_cond in H5; elim H5; intros _ H8; elim H8;
rewrite <- (Ropp_involutive x); rewrite <- (Ropp_involutive x1);
apply Ropp_eq_compat; apply Rplus_eq_reg_l with (PI / 2);
apply H7.
replace (PI / 2 - x1 - (PI / 2 - x)) with (x - x1); [ idtac | ring ];
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr'; apply H6.
Qed.
Lemma CVN_R_sin :
forall fn:nat -> R -> R,
fn =
(fun (N:nat) (x:R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N)) ->
CVN_R fn.
Proof.
unfold CVN_R in |- *; unfold CVN_r in |- *; intros fn H r.
apply existT with (fun n:nat => / INR (fact (2 * n + 1)) * r ^ (2 * n)).
cut
(sigT
(fun l:R =>
Un_cv
(fun n:nat =>
sum_f_R0
(fun k:nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n)
l)).
intro X; elim X; intros.
apply existT with x.
split.
apply p.
intros; rewrite H; unfold Rdiv in |- *; do 2 rewrite Rabs_mult;
rewrite pow_1_abs; rewrite Rmult_1_l.
cut (0 < / INR (fact (2 * n + 1))).
intro; rewrite (Rabs_right _ (Rle_ge _ _ (Rlt_le _ _ H1))).
apply Rmult_le_compat_l.
left; apply H1.
rewrite <- RPow_abs; apply pow_maj_Rabs.
rewrite Rabs_Rabsolu; unfold Boule in H0; rewrite Rminus_0_r in H0; left;
apply H0.
apply Rinv_0_lt_compat; apply INR_fact_lt_0.
cut ((r:R) <> 0).
intro; apply Alembert_C2.
intro; apply Rabs_no_R0.
apply prod_neq_R0.
apply Rinv_neq_0_compat; apply INR_fact_neq_0.
apply pow_nonzero; assumption.
assert (H1 := Alembert_sin).
unfold sin_n in H1; unfold Un_cv in H1; unfold Un_cv in |- *; intros.
cut (0 < eps / Rsqr r).
intro; elim (H1 _ H3); intros N0 H4.
exists N0; intros.
unfold R_dist in |- *; assert (H6 := H4 _ H5).
unfold R_dist in H5;
replace
(Rabs
(Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) /
Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))) with
(Rsqr r *
Rabs
((-1) ^ S n / INR (fact (2 * S n + 1)) /
((-1) ^ n / INR (fact (2 * n + 1))))).
apply Rmult_lt_reg_l with (/ Rsqr r).
apply Rinv_0_lt_compat; apply Rsqr_pos_lt; assumption.
pattern (/ Rsqr r) at 1 in |- *; rewrite <- (Rabs_right (/ Rsqr r)).
rewrite <- Rabs_mult.
rewrite Rmult_minus_distr_l.
rewrite Rmult_0_r; rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_l; rewrite <- (Rmult_comm eps).
apply H6.
unfold Rsqr in |- *; apply prod_neq_R0; assumption.
apply Rle_ge; left; apply Rinv_0_lt_compat; apply Rsqr_pos_lt; assumption.
unfold Rdiv in |- *; rewrite (Rmult_comm (Rsqr r)); repeat rewrite Rabs_mult;
rewrite Rabs_Rabsolu; rewrite pow_1_abs.
rewrite Rmult_1_l.
repeat rewrite Rmult_assoc; apply Rmult_eq_compat_l.
rewrite Rinv_mult_distr.
rewrite Rinv_involutive.
rewrite Rabs_mult.
rewrite Rabs_Rinv.
rewrite pow_1_abs; rewrite Rinv_1; rewrite Rmult_1_l.
rewrite Rinv_mult_distr.
rewrite <- Rabs_Rinv.
rewrite Rinv_involutive.
rewrite Rabs_mult.
do 2 rewrite Rabs_Rabsolu.
rewrite (Rmult_comm (Rabs (r ^ (2 * S n)))).
rewrite Rmult_assoc; apply Rmult_eq_compat_l.
rewrite Rabs_Rinv.
rewrite Rabs_Rabsolu.
repeat rewrite Rabs_right.
replace (r ^ (2 * S n)) with (r ^ (2 * n) * r * r).
do 2 rewrite <- Rmult_assoc.
rewrite <- Rinv_l_sym.
unfold Rsqr in |- *; ring.
apply pow_nonzero; assumption.
replace (2 * S n)%nat with (S (S (2 * n))).
simpl in |- *; ring.
ring.
apply Rle_ge; apply pow_le; left; apply (cond_pos r).
apply Rle_ge; apply pow_le; left; apply (cond_pos r).
apply Rabs_no_R0; apply pow_nonzero; assumption.
apply INR_fact_neq_0.
apply Rinv_neq_0_compat; apply INR_fact_neq_0.
apply Rabs_no_R0; apply Rinv_neq_0_compat; apply INR_fact_neq_0.
apply Rabs_no_R0; apply pow_nonzero; assumption.
apply pow_nonzero; discrR.
apply INR_fact_neq_0.
apply pow_nonzero; discrR.
apply Rinv_neq_0_compat; apply INR_fact_neq_0.
unfold Rdiv in |- *; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; apply Rsqr_pos_lt; assumption ].
assert (H0 := cond_pos r); red in |- *; intro; rewrite H1 in H0;
elim (Rlt_irrefl _ H0).
Qed.
(sin h)/h -> 1 when h -> 0
Lemma derivable_pt_lim_sin_0 : derivable_pt_lim sin 0 1.
Proof.
unfold derivable_pt_lim in |- *; intros.
set
(fn := fun (N:nat) (x:R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N)).
cut (CVN_R fn).
intro; cut (forall x:R, sigT (fun l:R => Un_cv (fun N:nat => SP fn N x) l)).
intro cv.
set (r := mkposreal _ Rlt_0_1).
cut (CVN_r fn r).
intro; cut (forall (n:nat) (y:R), Boule 0 r y -> continuity_pt (fn n) y).
intro; cut (Boule 0 r 0).
intro; assert (H2 := SFL_continuity_pt _ cv _ X0 H0 _ H1).
unfold continuity_pt in H2; unfold continue_in in H2; unfold limit1_in in H2;
unfold limit_in in H2; simpl in H2; unfold R_dist in H2.
elim (H2 _ H); intros alp H3.
elim H3; intros.
exists (mkposreal _ H4).
simpl in |- *; intros.
rewrite sin_0; rewrite Rplus_0_l; unfold Rminus in |- *; rewrite Ropp_0;
rewrite Rplus_0_r.
cut (Rabs (SFL fn cv h - SFL fn cv 0) < eps).
intro; cut (SFL fn cv 0 = 1).
intro; cut (SFL fn cv h = sin h / h).
intro; rewrite H9 in H8; rewrite H10 in H8.
apply H8.
unfold SFL, sin in |- *.
case (cv h); intros.
case (exist_sin (Rsqr h)); intros.
unfold Rdiv in |- *; rewrite (Rinv_r_simpl_m h x0 H6).
eapply UL_sequence.
apply u.
unfold sin_in in s; unfold sin_n, infinit_sum in s;
unfold SP, fn, Un_cv in |- *; intros.
elim (s _ H10); intros N0 H11.
exists N0; intros.
unfold R_dist in |- *; unfold R_dist in H11.
replace
(sum_f_R0 (fun k:nat => (-1) ^ k / INR (fact (2 * k + 1)) * h ^ (2 * k)) n)
with
(sum_f_R0 (fun i:nat => (-1) ^ i / INR (fact (2 * i + 1)) * Rsqr h ^ i) n).
apply H11; assumption.
apply sum_eq; intros; apply Rmult_eq_compat_l; unfold Rsqr in |- *;
rewrite pow_sqr; reflexivity.
unfold SFL, sin in |- *.
case (cv 0); intros.
eapply UL_sequence.
apply u.
unfold SP, fn in |- *; unfold Un_cv in |- *; intros; exists 1%nat; intros.
unfold R_dist in |- *;
replace
(sum_f_R0 (fun k:nat => (-1) ^ k / INR (fact (2 * k + 1)) * 0 ^ (2 * k)) n)
with 1.
unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption.
rewrite decomp_sum.
simpl in |- *; rewrite Rmult_1_r; unfold Rdiv in |- *; rewrite Rinv_1;
rewrite Rmult_1_r; pattern 1 at 1 in |- *; rewrite <- Rplus_0_r;
apply Rplus_eq_compat_l.
symmetry in |- *; apply sum_eq_R0; intros.
rewrite Rmult_0_l; rewrite Rmult_0_r; reflexivity.
unfold ge in H10; apply lt_le_trans with 1%nat; [ apply lt_n_Sn | apply H10 ].
apply H5.
split.
unfold D_x, no_cond in |- *; split.
trivial.
apply (sym_not_eq (A:=R)); apply H6.
unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r; apply H7.
unfold Boule in |- *; unfold Rminus in |- *; rewrite Ropp_0;
rewrite Rplus_0_r; rewrite Rabs_R0; apply (cond_pos r).
intros; unfold fn in |- *;
replace (fun x:R => (-1) ^ n / INR (fact (2 * n + 1)) * x ^ (2 * n)) with
(fct_cte ((-1) ^ n / INR (fact (2 * n + 1))) * pow_fct (2 * n))%F;
[ idtac | reflexivity ].
apply continuity_pt_mult.
apply derivable_continuous_pt.
apply derivable_pt_const.
apply derivable_continuous_pt.
apply (derivable_pt_pow (2 * n) y).
apply (X r).
apply (CVN_R_CVS _ X).
apply CVN_R_sin; unfold fn in |- *; reflexivity.
Qed.
((cos h)-1)/h -> 0 when h -> 0
Lemma derivable_pt_lim_cos_0 : derivable_pt_lim cos 0 0.
Proof.
unfold derivable_pt_lim in |- *; intros.
assert (H0 := derivable_pt_lim_sin_0).
unfold derivable_pt_lim in H0.
cut (0 < eps / 2).
intro; elim (H0 _ H1); intros del H2.
cut (continuity_pt sin 0).
intro; unfold continuity_pt in H3; unfold continue_in in H3;
unfold limit1_in in H3; unfold limit_in in H3; simpl in H3;
unfold R_dist in H3.
cut (0 < eps / 2); [ intro | assumption ].
elim (H3 _ H4); intros del_c H5.
cut (0 < Rmin del del_c).
intro; set (delta := mkposreal _ H6).
exists delta; intros.
rewrite Rplus_0_l; replace (cos h - cos 0) with (-2 * Rsqr (sin (h / 2))).
unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r.
unfold Rdiv in |- *; do 2 rewrite Ropp_mult_distr_l_reverse.
rewrite Rabs_Ropp.
replace (2 * Rsqr (sin (h * / 2)) * / h) with
(sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2)).
apply Rle_lt_trans with
(Rabs (sin (h / 2) * (sin (h / 2) / (h / 2) - 1)) + Rabs (sin (h / 2))).
apply Rabs_triang.
rewrite (double_var eps); apply Rplus_lt_compat.
apply Rle_lt_trans with (Rabs (sin (h / 2) / (h / 2) - 1)).
rewrite Rabs_mult; rewrite Rmult_comm;
pattern (Rabs (sin (h / 2) / (h / 2) - 1)) at 2 in |- *;
rewrite <- Rmult_1_r; apply Rmult_le_compat_l.
apply Rabs_pos.
assert (H9 := SIN_bound (h / 2)).
unfold Rabs in |- *; case (Rcase_abs (sin (h / 2))); intro.
pattern 1 at 3 in |- *; rewrite <- (Ropp_involutive 1).
apply Ropp_le_contravar.
elim H9; intros; assumption.
elim H9; intros; assumption.
cut (Rabs (h / 2) < del).
intro; cut (h / 2 <> 0).
intro; assert (H11 := H2 _ H10 H9).
rewrite Rplus_0_l in H11; rewrite sin_0 in H11.
rewrite Rminus_0_r in H11; apply H11.
unfold Rdiv in |- *; apply prod_neq_R0.
apply H7.
apply Rinv_neq_0_compat; discrR.
apply Rlt_trans with (del / 2).
unfold Rdiv in |- *; rewrite Rabs_mult.
rewrite (Rabs_right (/ 2)).
do 2 rewrite <- (Rmult_comm (/ 2)); apply Rmult_lt_compat_l.
apply Rinv_0_lt_compat; prove_sup0.
apply Rlt_le_trans with (pos delta).
apply H8.
unfold delta in |- *; simpl in |- *; apply Rmin_l.
apply Rle_ge; left; apply Rinv_0_lt_compat; prove_sup0.
rewrite <- (Rplus_0_r (del / 2)); pattern del at 1 in |- *;
rewrite (double_var del); apply Rplus_lt_compat_l;
unfold Rdiv in |- *; apply Rmult_lt_0_compat.
apply (cond_pos del).
apply Rinv_0_lt_compat; prove_sup0.
elim H5; intros; assert (H11 := H10 (h / 2)).
rewrite sin_0 in H11; do 2 rewrite Rminus_0_r in H11.
apply H11.
split.
unfold D_x, no_cond in |- *; split.
trivial.
apply (sym_not_eq (A:=R)); unfold Rdiv in |- *; apply prod_neq_R0.
apply H7.
apply Rinv_neq_0_compat; discrR.
apply Rlt_trans with (del_c / 2).
unfold Rdiv in |- *; rewrite Rabs_mult.
rewrite (Rabs_right (/ 2)).
do 2 rewrite <- (Rmult_comm (/ 2)).
apply Rmult_lt_compat_l.
apply Rinv_0_lt_compat; prove_sup0.
apply Rlt_le_trans with (pos delta).
apply H8.
unfold delta in |- *; simpl in |- *; apply Rmin_r.
apply Rle_ge; left; apply Rinv_0_lt_compat; prove_sup0.
rewrite <- (Rplus_0_r (del_c / 2)); pattern del_c at 2 in |- *;
rewrite (double_var del_c); apply Rplus_lt_compat_l.
unfold Rdiv in |- *; apply Rmult_lt_0_compat.
apply H9.
apply Rinv_0_lt_compat; prove_sup0.
rewrite Rmult_minus_distr_l; rewrite Rmult_1_r; unfold Rminus in |- *;
rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r;
rewrite (Rmult_comm 2); unfold Rdiv, Rsqr in |- *.
repeat rewrite Rmult_assoc.
repeat apply Rmult_eq_compat_l.
rewrite Rinv_mult_distr.
rewrite Rinv_involutive.
apply Rmult_comm.
discrR.
apply H7.
apply Rinv_neq_0_compat; discrR.
pattern h at 2 in |- *; replace h with (2 * (h / 2)).
rewrite (cos_2a_sin (h / 2)).
rewrite cos_0; unfold Rsqr in |- *; ring.
unfold Rdiv in |- *; rewrite <- Rmult_assoc; apply Rinv_r_simpl_m.
discrR.
unfold Rmin in |- *; case (Rle_dec del del_c); intro.
apply (cond_pos del).
elim H5; intros; assumption.
apply continuity_sin.
unfold Rdiv in |- *; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
Qed.
Theorem derivable_pt_lim_sin : forall x:R, derivable_pt_lim sin x (cos x).
Proof.
intro; assert (H0 := derivable_pt_lim_sin_0).
assert (H := derivable_pt_lim_cos_0).
unfold derivable_pt_lim in H0, H.
unfold derivable_pt_lim in |- *; intros.
cut (0 < eps / 2);
[ intro
| unfold Rdiv in |- *; apply Rmult_lt_0_compat;
[ apply H1 | apply Rinv_0_lt_compat; prove_sup0 ] ].
elim (H0 _ H2); intros alp1 H3.
elim (H _ H2); intros alp2 H4.
set (alp := Rmin alp1 alp2).
cut (0 < alp).
intro; exists (mkposreal _ H5); intros.
replace ((sin (x + h) - sin x) / h - cos x) with
(sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1)).
apply Rle_lt_trans with
(Rabs (sin x * ((cos h - 1) / h)) + Rabs (cos x * (sin h / h - 1))).
apply Rabs_triang.
rewrite (double_var eps); apply Rplus_lt_compat.
apply Rle_lt_trans with (Rabs ((cos h - 1) / h)).
rewrite Rabs_mult; rewrite Rmult_comm;
pattern (Rabs ((cos h - 1) / h)) at 2 in |- *; rewrite <- Rmult_1_r;
apply Rmult_le_compat_l.
apply Rabs_pos.
assert (H8 := SIN_bound x); elim H8; intros.
unfold Rabs in |- *; case (Rcase_abs (sin x)); intro.
rewrite <- (Ropp_involutive 1).
apply Ropp_le_contravar; assumption.
assumption.
cut (Rabs h < alp2).
intro; assert (H9 := H4 _ H6 H8).
rewrite cos_0 in H9; rewrite Rplus_0_l in H9; rewrite Rminus_0_r in H9;
apply H9.
apply Rlt_le_trans with alp.
apply H7.
unfold alp in |- *; apply Rmin_r.
apply Rle_lt_trans with (Rabs (sin h / h - 1)).
rewrite Rabs_mult; rewrite Rmult_comm;
pattern (Rabs (sin h / h - 1)) at 2 in |- *; rewrite <- Rmult_1_r;
apply Rmult_le_compat_l.
apply Rabs_pos.
assert (H8 := COS_bound x); elim H8; intros.
unfold Rabs in |- *; case (Rcase_abs (cos x)); intro.
rewrite <- (Ropp_involutive 1); apply Ropp_le_contravar; assumption.
assumption.
cut (Rabs h < alp1).
intro; assert (H9 := H3 _ H6 H8).
rewrite sin_0 in H9; rewrite Rplus_0_l in H9; rewrite Rminus_0_r in H9;
apply H9.
apply Rlt_le_trans with alp.
apply H7.
unfold alp in |- *; apply Rmin_l.
rewrite sin_plus; unfold Rminus, Rdiv in |- *;
repeat rewrite Rmult_plus_distr_r; repeat rewrite Rmult_plus_distr_l;
repeat rewrite Rmult_assoc; repeat rewrite Rplus_assoc;
apply Rplus_eq_compat_l.
rewrite (Rplus_comm (sin x * (-1 * / h))); repeat rewrite Rplus_assoc;
apply Rplus_eq_compat_l.
rewrite Ropp_mult_distr_r_reverse; rewrite Ropp_mult_distr_l_reverse;
rewrite Rmult_1_r; rewrite Rmult_1_l; rewrite Ropp_mult_distr_r_reverse;
rewrite <- Ropp_mult_distr_l_reverse; apply Rplus_comm.
unfold alp in |- *; unfold Rmin in |- *; case (Rle_dec alp1 alp2); intro.
apply (cond_pos alp1).
apply (cond_pos alp2).
Qed.
Lemma derivable_pt_lim_cos : forall x:R, derivable_pt_lim cos x (- sin x).
Proof.
intro; cut (forall h:R, sin (h + PI / 2) = cos h).
intro; replace (- sin x) with (cos (x + PI / 2) * (1 + 0)).
generalize (derivable_pt_lim_comp (id + fct_cte (PI / 2))%F sin); intros.
cut (derivable_pt_lim (id + fct_cte (PI / 2)) x (1 + 0)).
cut (derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x) (cos (x + PI / 2))).
intros; generalize (H0 _ _ _ H2 H1);
replace (comp sin (id + fct_cte (PI / 2))%F) with
(fun x:R => sin (x + PI / 2)); [ idtac | reflexivity ].
unfold derivable_pt_lim in |- *; intros.
elim (H3 eps H4); intros.
exists x0.
intros; rewrite <- (H (x + h)); rewrite <- (H x); apply H5; assumption.
apply derivable_pt_lim_sin.
apply derivable_pt_lim_plus.
apply derivable_pt_lim_id.
apply derivable_pt_lim_const.
rewrite sin_cos; rewrite <- (Rplus_comm x); ring.
intro; rewrite cos_sin; rewrite Rplus_comm; reflexivity.
Qed.
Lemma derivable_pt_sin : forall x:R, derivable_pt sin x.
Proof.
unfold derivable_pt in |- *; intro.
apply existT with (cos x).
apply derivable_pt_lim_sin.
Qed.
Lemma derivable_pt_cos : forall x:R, derivable_pt cos x.
Proof.
unfold derivable_pt in |- *; intro.
apply existT with (- sin x).
apply derivable_pt_lim_cos.
Qed.
Lemma derivable_sin : derivable sin.
Proof.
unfold derivable in |- *; intro; apply derivable_pt_sin.
Qed.
Lemma derivable_cos : derivable cos.
Proof.
unfold derivable in |- *; intro; apply derivable_pt_cos.
Qed.
Lemma derive_pt_sin :
forall x:R, derive_pt sin x (derivable_pt_sin _) = cos x.
Proof.
intros; apply derive_pt_eq_0.
apply derivable_pt_lim_sin.
Qed.
Lemma derive_pt_cos :
forall x:R, derive_pt cos x (derivable_pt_cos _) = - sin x.
Proof.
intros; apply derive_pt_eq_0.
apply derivable_pt_lim_cos.
Qed.