Library Coq.ZArith.BinInt

Binary Integers (Pierre Crégut, CNET, Lannion, France)
Require Export BinPos.
Require Export Pnat.
Require Import BinNat.
Require Import Plus.
Require Import Mult.

Unset Boxed Definitions.

Binary integer numbers


Inductive Z : Set :=
  | Z0 : Z
  | Zpos : positive -> Z
  | Zneg : positive -> Z.

Automatically open scope positive_scope for the constructors of Z
Delimit Scope Z_scope with Z.
Bind Scope Z_scope with Z.
Arguments Scope Zpos [positive_scope].
Arguments Scope Zneg [positive_scope].

Subtraction of positive into Z


Definition Zdouble_plus_one (x:Z) :=
  match x with
    | Z0 => Zpos 1
    | Zpos p => Zpos (xI p)
    | Zneg p => Zneg (Pdouble_minus_one p)
  end.

Definition Zdouble_minus_one (x:Z) :=
  match x with
    | Z0 => Zneg 1
    | Zneg p => Zneg (xI p)
    | Zpos p => Zpos (Pdouble_minus_one p)
  end.

Definition Zdouble (x:Z) :=
  match x with
    | Z0 => Z0
    | Zpos p => Zpos (xO p)
    | Zneg p => Zneg (xO p)
  end.

Fixpoint ZPminus (x y:positive) {struct y} : Z :=
  match x, y with
    | xI x', xI y' => Zdouble (ZPminus x' y')
    | xI x', xO y' => Zdouble_plus_one (ZPminus x' y')
    | xI x', xH => Zpos (xO x')
    | xO x', xI y' => Zdouble_minus_one (ZPminus x' y')
    | xO x', xO y' => Zdouble (ZPminus x' y')
    | xO x', xH => Zpos (Pdouble_minus_one x')
    | xH, xI y' => Zneg (xO y')
    | xH, xO y' => Zneg (Pdouble_minus_one y')
    | xH, xH => Z0
  end.

Addition on integers


Definition Zplus (x y:Z) :=
  match x, y with
    | Z0, y => y
    | x, Z0 => x
    | Zpos x', Zpos y' => Zpos (x' + y')
    | Zpos x', Zneg y' =>
      match (x' ?= y')%positive Eq with
        | Eq => Z0
        | Lt => Zneg (y' - x')
        | Gt => Zpos (x' - y')
      end
    | Zneg x', Zpos y' =>
      match (x' ?= y')%positive Eq with
        | Eq => Z0
        | Lt => Zpos (y' - x')
        | Gt => Zneg (x' - y')
      end
    | Zneg x', Zneg y' => Zneg (x' + y')
  end.

Infix "+" := Zplus : Z_scope.

Opposite


Definition Zopp (x:Z) :=
  match x with
    | Z0 => Z0
    | Zpos x => Zneg x
    | Zneg x => Zpos x
  end.

Notation "- x" := (Zopp x) : Z_scope.

Successor on integers


Definition Zsucc (x:Z) := (x + Zpos 1)%Z.

Predecessor on integers


Definition Zpred (x:Z) := (x + Zneg 1)%Z.

Subtraction on integers


Definition Zminus (m n:Z) := (m + - n)%Z.

Infix "-" := Zminus : Z_scope.

Multiplication on integers


Definition Zmult (x y:Z) :=
  match x, y with
    | Z0, _ => Z0
    | _, Z0 => Z0
    | Zpos x', Zpos y' => Zpos (x' * y')
    | Zpos x', Zneg y' => Zneg (x' * y')
    | Zneg x', Zpos y' => Zneg (x' * y')
    | Zneg x', Zneg y' => Zpos (x' * y')
  end.

Infix "*" := Zmult : Z_scope.

Comparison of integers


Definition Zcompare (x y:Z) :=
  match x, y with
    | Z0, Z0 => Eq
    | Z0, Zpos y' => Lt
    | Z0, Zneg y' => Gt
    | Zpos x', Z0 => Gt
    | Zpos x', Zpos y' => (x' ?= y')%positive Eq
    | Zpos x', Zneg y' => Gt
    | Zneg x', Z0 => Lt
    | Zneg x', Zpos y' => Lt
    | Zneg x', Zneg y' => CompOpp ((x' ?= y')%positive Eq)
  end.

Infix "?=" := Zcompare (at level 70, no associativity) : Z_scope.

Ltac elim_compare com1 com2 :=
  case (Dcompare (com1 ?= com2)%Z);
    [ idtac | let x := fresh "H" in
      (intro x; case x; clear x) ].

Sign function


Definition Zsgn (z:Z) : Z :=
  match z with
    | Z0 => Z0
    | Zpos p => Zpos 1
    | Zneg p => Zneg 1
  end.

Direct, easier to handle variants of successor and addition


Definition Zsucc' (x:Z) :=
  match x with
    | Z0 => Zpos 1
    | Zpos x' => Zpos (Psucc x')
    | Zneg x' => ZPminus 1 x'
  end.

Definition Zpred' (x:Z) :=
  match x with
    | Z0 => Zneg 1
    | Zpos x' => ZPminus x' 1
    | Zneg x' => Zneg (Psucc x')
  end.

Definition Zplus' (x y:Z) :=
  match x, y with
    | Z0, y => y
    | x, Z0 => x
    | Zpos x', Zpos y' => Zpos (x' + y')
    | Zpos x', Zneg y' => ZPminus x' y'
    | Zneg x', Zpos y' => ZPminus y' x'
    | Zneg x', Zneg y' => Zneg (x' + y')
  end.

Open Local Scope Z_scope.

Inductive specification of Z


Theorem Zind :
  forall P:Z -> Prop,
    P Z0 ->
    (forall x:Z, P x -> P (Zsucc' x)) ->
    (forall x:Z, P x -> P (Zpred' x)) -> forall n:Z, P n.
Proof.
  intros P H0 Hs Hp z; destruct z.
  assumption.
  apply Pind with (P := fun p => P (Zpos p)).
    change (P (Zsucc' Z0)) in |- *; apply Hs; apply H0.
    intro n; exact (Hs (Zpos n)).
  apply Pind with (P := fun p => P (Zneg p)).
    change (P (Zpred' Z0)) in |- *; apply Hp; apply H0.
    intro n; exact (Hp (Zneg n)).
Qed.

Misc properties about binary integer operations


Properties of opposite on binary integer numbers


Theorem Zopp_neg : forall p:positive, - Zneg p = Zpos p.
Proof.
  reflexivity.
Qed.

opp is involutive

Theorem Zopp_involutive : forall n:Z, - - n = n.
Proof.
  intro x; destruct x; reflexivity.
Qed.

Injectivity of the opposite

Theorem Zopp_inj : forall n m:Z, - n = - m -> n = m.
Proof.
  intros x y; case x; case y; simpl in |- *; intros;
    [ trivial | discriminate H | discriminate H | discriminate H | simplify_eq H; intro E; rewrite E; trivial | discriminate H | discriminate H | discriminate H | simplify_eq H; intro E; rewrite E; trivial ].
Qed.

Properties of the direct definition of successor and predecessor


Lemma Zpred'_succ' : forall n:Z, Zpred' (Zsucc' n) = n.
Proof.
  intro x; destruct x; simpl in |- *.
    reflexivity.
  destruct p; simpl in |- *; try rewrite Pdouble_minus_one_o_succ_eq_xI;
    reflexivity.
  destruct p; simpl in |- *; try rewrite Psucc_o_double_minus_one_eq_xO;
    reflexivity.
Qed.

Lemma Zsucc'_discr : forall n:Z, n <> Zsucc' n.
Proof.
  intro x; destruct x; simpl in |- *.
  discriminate.
  injection; apply Psucc_discr.
  destruct p; simpl in |- *.
    discriminate.
    intro H; symmetry in H; injection H; apply double_moins_un_xO_discr.
    discriminate.
Qed.

Other properties of binary integer numbers


Lemma ZL0 : 2%nat = (1 + 1)%nat.
Proof.
  reflexivity.
Qed.

Properties of the addition on integers


zero is left neutral for addition


Theorem Zplus_0_l : forall n:Z, Z0 + n = n.
Proof.
  intro x; destruct x; reflexivity.
Qed.

zero is right neutral for addition


Theorem Zplus_0_r : forall n:Z, n + Z0 = n.
Proof.
  intro x; destruct x; reflexivity.
Qed.

addition is commutative


Theorem Zplus_comm : forall n m:Z, n + m = m + n.
Proof.
  intro x; induction x as [| p| p]; intro y; destruct y as [| q| q];
    simpl in |- *; try reflexivity.
  rewrite Pplus_comm; reflexivity.
  rewrite ZC4; destruct ((q ?= p)%positive Eq); reflexivity.
  rewrite ZC4; destruct ((q ?= p)%positive Eq); reflexivity.
  rewrite Pplus_comm; reflexivity.
Qed.

opposite distributes over addition


Theorem Zopp_plus_distr : forall n m:Z, - (n + m) = - n + - m.
Proof.
  intro x; destruct x as [| p| p]; intro y; destruct y as [| q| q];
    simpl in |- *; reflexivity || destruct ((p ?= q)%positive Eq);
      reflexivity.
Qed.

opposite is inverse for addition


Theorem Zplus_opp_r : forall n:Z, n + - n = Z0.
Proof.
  intro x; destruct x as [| p| p]; simpl in |- *;
    [ reflexivity | rewrite (Pcompare_refl p); reflexivity | rewrite (Pcompare_refl p); reflexivity ].
Qed.

Theorem Zplus_opp_l : forall n:Z, - n + n = Z0.
Proof.
  intro; rewrite Zplus_comm; apply Zplus_opp_r.
Qed.

Hint Local Resolve Zplus_0_l Zplus_0_r.

addition is associative


Lemma weak_assoc :
  forall (p q:positive) (n:Z), Zpos p + (Zpos q + n) = Zpos p + Zpos q + n.
Proof.
  intros x y z'; case z';
    [ auto with arith
      | intros z; simpl in |- *; rewrite Pplus_assoc; auto with arith
      | intros z; simpl in |- *; ElimPcompare y z; intros E0; rewrite E0;
        ElimPcompare (x + y)%positive z; intros E1; rewrite E1;
          [ absurd ((x + y ?= z)%positive Eq = Eq);
            [               rewrite nat_of_P_gt_Gt_compare_complement_morphism;
                [ discriminate | rewrite nat_of_P_plus_morphism; rewrite (Pcompare_Eq_eq y z E0); elim (ZL4 x); intros k E2; rewrite E2; simpl in |- *; unfold gt, lt in |- *; apply le_n_S; apply le_plus_r ]
              | assumption ]
            | absurd ((x + y ?= z)%positive Eq = Lt);
              [                 rewrite nat_of_P_gt_Gt_compare_complement_morphism;
                  [ discriminate | rewrite nat_of_P_plus_morphism; rewrite (Pcompare_Eq_eq y z E0); elim (ZL4 x); intros k E2; rewrite E2; simpl in |- *; unfold gt, lt in |- *; apply le_n_S; apply le_plus_r ]
                | assumption ]
            | rewrite (Pcompare_Eq_eq y z E0);
                        elim (Pminus_mask_Gt (x + z) z);
                [ intros t H; elim H; intros H1 H2; elim H2; intros H3 H4;
                  unfold Pminus in |- *; rewrite H1; cut (x = t);
                    [ intros E; rewrite E; auto with arith
                      | apply Pplus_reg_r with (r := z); rewrite <- H3;
                        rewrite Pplus_comm; trivial with arith ]
                  | pattern z at 1 in |- *; rewrite <- (Pcompare_Eq_eq y z E0);
                    assumption ]
            | elim (Pminus_mask_Gt z y);
              [                 intros k H; elim H; intros H1 H2; elim H2; intros H3 H4;
                  unfold Pminus at 1 in |- *; rewrite H1; cut (x = k);
                    [ intros E; rewrite E; rewrite (Pcompare_refl k);
                      trivial with arith
                      | apply Pplus_reg_r with (r := y); rewrite (Pplus_comm k y);
                        rewrite H3; apply Pcompare_Eq_eq; assumption ]
                | apply ZC2; assumption ]
            | elim (Pminus_mask_Gt z y);
              [                 intros k H; elim H; intros H1 H2; elim H2; intros H3 H4;
                  unfold Pminus at 1 3 5 in |- *; rewrite H1;
                    cut ((x ?= k)%positive Eq = Lt);
                      [ intros E2; rewrite E2; elim (Pminus_mask_Gt k x);
                        [ intros i H5; elim H5; intros H6 H7; elim H7; intros H8 H9;
                          elim (Pminus_mask_Gt z (x + y));
                            [ intros j H10; elim H10; intros H11 H12; elim H12;
                              intros H13 H14; unfold Pminus in |- *;
                                rewrite H6; rewrite H11; cut (i = j);
                                  [ intros E; rewrite E; auto with arith | apply (Pplus_reg_l (x + y)); rewrite H13; rewrite (Pplus_comm x y); rewrite <- Pplus_assoc; rewrite H8; assumption ]
                              | apply ZC2; assumption ]
                          | apply ZC2; assumption ]
                        | apply nat_of_P_lt_Lt_compare_complement_morphism;
                          apply plus_lt_reg_l with (p := nat_of_P y);
                            do 2 rewrite <- nat_of_P_plus_morphism;
                              apply nat_of_P_lt_Lt_compare_morphism;
                                rewrite H3; rewrite Pplus_comm; assumption ]
                | apply ZC2; assumption ]
            | elim (Pminus_mask_Gt z y);
              [                 intros k H; elim H; intros H1 H2; elim H2; intros H3 H4;
                  elim (Pminus_mask_Gt (x + y) z);
                    [ intros i H5; elim H5; intros H6 H7; elim H7; intros H8 H9;
                      unfold Pminus in |- *; rewrite H1; rewrite H6;
                        cut ((x ?= k)%positive Eq = Gt);
                          [ intros H10; elim (Pminus_mask_Gt x k H10); intros j H11;
                            elim H11; intros H12 H13; elim H13;
                              intros H14 H15; rewrite H10; rewrite H12;
                                cut (i = j);
                                  [ intros H16; rewrite H16; auto with arith | apply (Pplus_reg_l (z + k)); rewrite <- (Pplus_assoc z k j); rewrite H14; rewrite (Pplus_comm z k); rewrite <- Pplus_assoc; rewrite H8; rewrite (Pplus_comm x y); rewrite Pplus_assoc; rewrite (Pplus_comm k y); rewrite H3; trivial with arith ]
                            | apply nat_of_P_gt_Gt_compare_complement_morphism;
                              unfold lt, gt in |- *;
                                apply plus_lt_reg_l with (p := nat_of_P y);
                                  do 2 rewrite <- nat_of_P_plus_morphism;
                                    apply nat_of_P_lt_Lt_compare_morphism;
                                      rewrite H3; rewrite Pplus_comm; apply ZC1;
                                        assumption ]
                      | assumption ]
                | apply ZC2; assumption ]
            | absurd ((x + y ?= z)%positive Eq = Eq);
              [                 rewrite nat_of_P_gt_Gt_compare_complement_morphism;
                  [ discriminate
                    | rewrite nat_of_P_plus_morphism; unfold gt in |- *;
                      apply lt_le_trans with (m := nat_of_P y);
                        [ apply nat_of_P_lt_Lt_compare_morphism; apply ZC1; assumption | apply le_plus_r ] ]
                | assumption ]
            | absurd ((x + y ?= z)%positive Eq = Lt);
              [                 rewrite nat_of_P_gt_Gt_compare_complement_morphism;
                  [ discriminate
                    | unfold gt in |- *; apply lt_le_trans with (m := nat_of_P y);
                      [ exact (nat_of_P_gt_Gt_compare_morphism y z E0) | rewrite nat_of_P_plus_morphism; apply le_plus_r ] ]
                | assumption ]
            | elim Pminus_mask_Gt with (1 := E0); intros k H1;
                        elim Pminus_mask_Gt with (1 := E1); intros i H2;
                elim H1; intros H3 H4; elim H4; intros H5 H6;
                  elim H2; intros H7 H8; elim H8; intros H9 H10;
                    unfold Pminus in |- *; rewrite H3; rewrite H7;
                      cut ((x + k)%positive = i);
                        [ intros E; rewrite E; auto with arith | apply (Pplus_reg_l z); rewrite (Pplus_comm x k); rewrite Pplus_assoc; rewrite H5; rewrite H9; rewrite Pplus_comm; trivial with arith ] ] ].
Qed.

Hint Local Resolve weak_assoc.

Theorem Zplus_assoc : forall n m p:Z, n + (m + p) = n + m + p.
Proof.
  intros x y z; case x; case y; case z; auto with arith; intros;
    [ rewrite (Zplus_comm (Zneg p0)); rewrite weak_assoc; rewrite (Zplus_comm (Zpos p1 + Zneg p0)); rewrite weak_assoc; rewrite (Zplus_comm (Zpos p1)); trivial with arith | apply Zopp_inj; do 4 rewrite Zopp_plus_distr; do 2 rewrite Zopp_neg; rewrite Zplus_comm; rewrite <- weak_assoc; rewrite (Zplus_comm (- Zpos p1)); rewrite (Zplus_comm (Zpos p0 + - Zpos p1)); rewrite (weak_assoc p); rewrite weak_assoc; rewrite (Zplus_comm (Zpos p0)); trivial with arith | rewrite Zplus_comm; rewrite (Zplus_comm (Zpos p0) (Zpos p)); rewrite <- weak_assoc; rewrite Zplus_comm; rewrite (Zplus_comm (Zpos p0)); trivial with arith | apply Zopp_inj; do 4 rewrite Zopp_plus_distr; do 2 rewrite Zopp_neg; rewrite (Zplus_comm (- Zpos p0)); rewrite weak_assoc; rewrite (Zplus_comm (Zpos p1 + - Zpos p0)); rewrite weak_assoc; rewrite (Zplus_comm (Zpos p)); trivial with arith | apply Zopp_inj; do 4 rewrite Zopp_plus_distr; do 2 rewrite Zopp_neg; apply weak_assoc | apply Zopp_inj; do 4 rewrite Zopp_plus_distr; do 2 rewrite Zopp_neg; apply weak_assoc ].
Qed.

Lemma Zplus_assoc_reverse : forall n m p:Z, n + m + p = n + (m + p).
Proof.
  intros; symmetry in |- *; apply Zplus_assoc.
Qed.

Associativity mixed with commutativity


Theorem Zplus_permute : forall n m p:Z, n + (m + p) = m + (n + p).
Proof.
  intros n m p; rewrite Zplus_comm; rewrite <- Zplus_assoc;
    rewrite (Zplus_comm p n); trivial with arith.
Qed.

addition simplifies


Theorem Zplus_reg_l : forall n m p:Z, n + m = n + p -> m = p.
  intros n m p H; cut (- n + (n + m) = - n + (n + p));
    [ do 2 rewrite Zplus_assoc; rewrite (Zplus_comm (- n) n); rewrite Zplus_opp_r; simpl in |- *; trivial with arith | rewrite H; trivial with arith ].
Qed.

addition and successor permutes


Lemma Zplus_succ_l : forall n m:Z, Zsucc n + m = Zsucc (n + m).
Proof.
  intros x y; unfold Zsucc in |- *; rewrite (Zplus_comm (x + y));
    rewrite Zplus_assoc; rewrite (Zplus_comm (Zpos 1));
      trivial with arith.
Qed.

Lemma Zplus_succ_r : forall n m:Z, Zsucc (n + m) = n + Zsucc m.
Proof.
  intros n m; unfold Zsucc in |- *; rewrite Zplus_assoc; trivial with arith.
Qed.

Lemma Zplus_succ_comm : forall n m:Z, Zsucc n + m = n + Zsucc m.
Proof.
  unfold Zsucc in |- *; intros n m; rewrite <- Zplus_assoc;
    rewrite (Zplus_comm (Zpos 1)); trivial with arith.
Qed.

Misc properties, usually redundant or non natural


Lemma Zplus_0_r_reverse : forall n:Z, n = n + Z0.
Proof.
  symmetry in |- *; apply Zplus_0_r.
Qed.

Lemma Zplus_0_simpl_l : forall n m:Z, n + Z0 = m -> n = m.
Proof.
  intros n m; rewrite Zplus_0_r; intro; assumption.
Qed.

Lemma Zplus_0_simpl_l_reverse : forall n m:Z, n = m + Z0 -> n = m.
Proof.
  intros n m; rewrite Zplus_0_r; intro; assumption.
Qed.

Lemma Zplus_eq_compat : forall n m p q:Z, n = m -> p = q -> n + p = m + q.
Proof.
  intros; rewrite H; rewrite H0; reflexivity.
Qed.

Lemma Zplus_opp_expand : forall n m p:Z, n + - m = n + - p + (p + - m).
Proof.
  intros x y z.
  rewrite <- (Zplus_assoc x).
  rewrite (Zplus_assoc (- z)).
  rewrite Zplus_opp_l.
  reflexivity.
Qed.

Properties of successor and predecessor on binary integer numbers


Theorem Zsucc_discr : forall n:Z, n <> Zsucc n.
Proof.
  intros n; cut (Z0 <> Zpos 1);
    [ unfold not in |- *; intros H1 H2; apply H1; apply (Zplus_reg_l n); rewrite Zplus_0_r; exact H2 | discriminate ].
Qed.

Theorem Zpos_succ_morphism :
  forall p:positive, Zpos (Psucc p) = Zsucc (Zpos p).
Proof.
  intro; rewrite Pplus_one_succ_r; unfold Zsucc in |- *; simpl in |- *;
    trivial with arith.
Qed.

successor and predecessor are inverse functions

Theorem Zsucc_pred : forall n:Z, n = Zsucc (Zpred n).
Proof.
  intros n; unfold Zsucc, Zpred in |- *; rewrite <- Zplus_assoc; simpl in |- *;
    rewrite Zplus_0_r; trivial with arith.
Qed.

Hint Immediate Zsucc_pred: zarith.

Theorem Zpred_succ : forall n:Z, n = Zpred (Zsucc n).
Proof.
  intros m; unfold Zpred, Zsucc in |- *; rewrite <- Zplus_assoc; simpl in |- *;
    rewrite Zplus_comm; auto with arith.
Qed.

Theorem Zsucc_inj : forall n m:Z, Zsucc n = Zsucc m -> n = m.
Proof.
  intros n m H.
  change (Zneg 1 + Zpos 1 + n = Zneg 1 + Zpos 1 + m) in |- *;
    do 2 rewrite <- Zplus_assoc; do 2 rewrite (Zplus_comm (Zpos 1));
      unfold Zsucc in H; rewrite H; trivial with arith.
Qed.

Misc properties, usually redundant or non natural

Lemma Zsucc_eq_compat : forall n m:Z, n = m -> Zsucc n = Zsucc m.
Proof.
  intros n m H; rewrite H; reflexivity.
Qed.

Lemma Zsucc_inj_contrapositive : forall n m:Z, n <> m -> Zsucc n <> Zsucc m.
Proof.
  unfold not in |- *; intros n m H1 H2; apply H1; apply Zsucc_inj; assumption.
Qed.

Properties of subtraction on binary integer numbers


minus and Z0


Lemma Zminus_0_r : forall n:Z, n - Z0 = n.
Proof.
  intro; unfold Zminus in |- *; simpl in |- *; rewrite Zplus_0_r;
    trivial with arith.
Qed.

Lemma Zminus_0_l_reverse : forall n:Z, n = n - Z0.
Proof.
  intro; symmetry in |- *; apply Zminus_0_r.
Qed.

Lemma Zminus_diag : forall n:Z, n - n = Z0.
Proof.
  intro; unfold Zminus in |- *; rewrite Zplus_opp_r; trivial with arith.
Qed.

Lemma Zminus_diag_reverse : forall n:Z, Z0 = n - n.
Proof.
  intro; symmetry in |- *; apply Zminus_diag.
Qed.

Relating minus with plus and Zsucc


Lemma Zplus_minus_eq : forall n m p:Z, n = m + p -> p = n - m.
Proof.
  intros n m p H; unfold Zminus in |- *; apply (Zplus_reg_l m);
    rewrite (Zplus_comm m (n + - m)); rewrite <- Zplus_assoc;
      rewrite Zplus_opp_l; rewrite Zplus_0_r; rewrite H;
        trivial with arith.
Qed.

Lemma Zminus_plus : forall n m:Z, n + m - n = m.
Proof.
  intros n m; unfold Zminus in |- *; rewrite (Zplus_comm n m);
    rewrite <- Zplus_assoc; rewrite Zplus_opp_r; apply Zplus_0_r.
Qed.

Lemma Zplus_minus : forall n m:Z, n + (m - n) = m.
Proof.
  unfold Zminus in |- *; intros n m; rewrite Zplus_permute; rewrite Zplus_opp_r;
    apply Zplus_0_r.
Qed.

Lemma Zminus_succ_l : forall n m:Z, Zsucc (n - m) = Zsucc n - m.
Proof.
  intros n m; unfold Zminus, Zsucc in |- *; rewrite (Zplus_comm n (- m));
    rewrite <- Zplus_assoc; apply Zplus_comm.
Qed.

Lemma Zminus_plus_simpl_l : forall n m p:Z, p + n - (p + m) = n - m.
Proof.
  intros n m p; unfold Zminus in |- *; rewrite Zopp_plus_distr;
    rewrite Zplus_assoc; rewrite (Zplus_comm p); rewrite <- (Zplus_assoc n p);
      rewrite Zplus_opp_r; rewrite Zplus_0_r; trivial with arith.
Qed.

Lemma Zminus_plus_simpl_l_reverse : forall n m p:Z, n - m = p + n - (p + m).
Proof.
  intros; symmetry in |- *; apply Zminus_plus_simpl_l.
Qed.

Lemma Zminus_plus_simpl_r : forall n m p:Z, n + p - (m + p) = n - m.
Proof.
  intros x y n.
  unfold Zminus in |- *.
  rewrite Zopp_plus_distr.
  rewrite (Zplus_comm (- y) (- n)).
  rewrite Zplus_assoc.
  rewrite <- (Zplus_assoc x n (- n)).
  rewrite (Zplus_opp_r n).
  rewrite <- Zplus_0_r_reverse.
  reflexivity.
Qed.

Misc redundant properties


Lemma Zeq_minus : forall n m:Z, n = m -> n - m = Z0.
Proof.
  intros x y H; rewrite H; symmetry in |- *; apply Zminus_diag_reverse.
Qed.

Lemma Zminus_eq : forall n m:Z, n - m = Z0 -> n = m.
Proof.
  intros x y H; rewrite <- (Zplus_minus y x); rewrite H; apply Zplus_0_r.
Qed.

Properties of multiplication on binary integer numbers


Theorem Zpos_mult_morphism :
  forall p q:positive, Zpos (p*q) = Zpos p * Zpos q.
Proof.
  auto.
Qed.

One is neutral for multiplication


Theorem Zmult_1_l : forall n:Z, Zpos 1 * n = n.
Proof.
  intro x; destruct x; reflexivity.
Qed.

Theorem Zmult_1_r : forall n:Z, n * Zpos 1 = n.
Proof.
  intro x; destruct x; simpl in |- *; try rewrite Pmult_1_r; reflexivity.
Qed.

Zero property of multiplication


Theorem Zmult_0_l : forall n:Z, Z0 * n = Z0.
Proof.
  intro x; destruct x; reflexivity.
Qed.

Theorem Zmult_0_r : forall n:Z, n * Z0 = Z0.
Proof.
  intro x; destruct x; reflexivity.
Qed.

Hint Local Resolve Zmult_0_l Zmult_0_r.

Lemma Zmult_0_r_reverse : forall n:Z, Z0 = n * Z0.
Proof.
  intro x; destruct x; reflexivity.
Qed.

Commutativity of multiplication


Theorem Zmult_comm : forall n m:Z, n * m = m * n.
Proof.
  intros x y; destruct x as [| p| p]; destruct y as [| q| q]; simpl in |- *;
    try rewrite (Pmult_comm p q); reflexivity.
Qed.

Associativity of multiplication


Theorem Zmult_assoc : forall n m p:Z, n * (m * p) = n * m * p.
Proof.
  intros x y z; destruct x; destruct y; destruct z; simpl in |- *;
    try rewrite Pmult_assoc; reflexivity.
Qed.

Lemma Zmult_assoc_reverse : forall n m p:Z, n * m * p = n * (m * p).
Proof.
  intros n m p; rewrite Zmult_assoc; trivial with arith.
Qed.

Associativity mixed with commutativity


Theorem Zmult_permute : forall n m p:Z, n * (m * p) = m * (n * p).
Proof.
  intros x y z; rewrite (Zmult_assoc y x z); rewrite (Zmult_comm y x).
  apply Zmult_assoc.
Qed.

Z is integral


Theorem Zmult_integral_l : forall n m:Z, n <> Z0 -> m * n = Z0 -> m = Z0.
Proof.
  intros x y; destruct x as [| p| p].
  intro H; absurd (Z0 = Z0); trivial.
  intros _ H; destruct y as [| q| q]; reflexivity || discriminate.
  intros _ H; destruct y as [| q| q]; reflexivity || discriminate.
Qed.

Theorem Zmult_integral : forall n m:Z, n * m = Z0 -> n = Z0 \/ m = Z0.
Proof.
  intros x y; destruct x; destruct y; auto; simpl in |- *; intro H;
    discriminate H.
Qed.

Lemma Zmult_1_inversion_l :
  forall n m:Z, n * m = Zpos 1 -> n = Zpos 1 \/ n = Zneg 1.
Proof.
  intros x y; destruct x as [| p| p]; intro; [ discriminate | left | right ];
    (destruct y as [| q| q]; try discriminate; simpl in H; injection H; clear H;
      intro H; rewrite Pmult_1_inversion_l with (1 := H);
        reflexivity).
Qed.

Multiplication and Opposite


Theorem Zopp_mult_distr_l : forall n m:Z, - (n * m) = - n * m.
Proof.
  intros x y; destruct x; destruct y; reflexivity.
Qed.

Theorem Zopp_mult_distr_r : forall n m:Z, - (n * m) = n * - m.
Proof.
  intros x y; rewrite (Zmult_comm x y); rewrite Zopp_mult_distr_l;
    apply Zmult_comm.
Qed.

Lemma Zopp_mult_distr_l_reverse : forall n m:Z, - n * m = - (n * m).
Proof.
  intros x y; symmetry in |- *; apply Zopp_mult_distr_l.
Qed.

Theorem Zmult_opp_comm : forall n m:Z, - n * m = n * - m.
Proof.
  intros x y; rewrite Zopp_mult_distr_l_reverse; rewrite Zopp_mult_distr_r;
    trivial with arith.
Qed.

Theorem Zmult_opp_opp : forall n m:Z, - n * - m = n * m.
Proof.
  intros x y; destruct x; destruct y; reflexivity.
Qed.

Theorem Zopp_eq_mult_neg_1 : forall n:Z, - n = n * Zneg 1.
Proof.
  intro x; induction x; intros; rewrite Zmult_comm; auto with arith.
Qed.

Distributivity of multiplication over addition


Lemma weak_Zmult_plus_distr_r :
  forall (p:positive) (n m:Z), Zpos p * (n + m) = Zpos p * n + Zpos p * m.
Proof.
  intros x y' z'; case y'; case z'; auto with arith; intros y z;
    (simpl in |- *; rewrite Pmult_plus_distr_l; trivial with arith) ||
      (simpl in |- *; ElimPcompare z y; intros E0; rewrite E0;
        [ rewrite (Pcompare_Eq_eq z y E0); rewrite (Pcompare_refl (x * y));
          trivial with arith
          | cut ((x * z ?= x * y)%positive Eq = Lt);
            [ intros E; rewrite E; rewrite Pmult_minus_distr_l;
              [ trivial with arith | apply ZC2; assumption ]
              | apply nat_of_P_lt_Lt_compare_complement_morphism;
                do 2 rewrite nat_of_P_mult_morphism; elim (ZL4 x);
                  intros h H1; rewrite H1; apply mult_S_lt_compat_l;
                    exact (nat_of_P_lt_Lt_compare_morphism z y E0) ]
          | cut ((x * z ?= x * y)%positive Eq = Gt);
            [ intros E; rewrite E; rewrite Pmult_minus_distr_l; auto with arith | apply nat_of_P_gt_Gt_compare_complement_morphism; unfold gt in |- *; do 2 rewrite nat_of_P_mult_morphism; elim (ZL4 x); intros h H1; rewrite H1; apply mult_S_lt_compat_l; exact (nat_of_P_gt_Gt_compare_morphism z y E0) ] ]).
Qed.

Theorem Zmult_plus_distr_r : forall n m p:Z, n * (m + p) = n * m + n * p.
Proof.
  intros x y z; case x;
    [ auto with arith | intros x'; apply weak_Zmult_plus_distr_r | intros p; apply Zopp_inj; rewrite Zopp_plus_distr; do 3 rewrite <- Zopp_mult_distr_l_reverse; rewrite Zopp_neg; apply weak_Zmult_plus_distr_r ].
Qed.

Theorem Zmult_plus_distr_l : forall n m p:Z, (n + m) * p = n * p + m * p.
Proof.
  intros n m p; rewrite Zmult_comm; rewrite Zmult_plus_distr_r;
    do 2 rewrite (Zmult_comm p); trivial with arith.
Qed.

Distributivity of multiplication over subtraction


Lemma Zmult_minus_distr_r : forall n m p:Z, (n - m) * p = n * p - m * p.
Proof.
  intros x y z; unfold Zminus in |- *.
  rewrite <- Zopp_mult_distr_l_reverse.
  apply Zmult_plus_distr_l.
Qed.


Lemma Zmult_minus_distr_l : forall n m p:Z, p * (n - m) = p * n - p * m.
Proof.
  intros x y z; rewrite (Zmult_comm z (x - y)).
  rewrite (Zmult_comm z x).
  rewrite (Zmult_comm z y).
  apply Zmult_minus_distr_r.
Qed.

Simplification of multiplication for non-zero integers


Lemma Zmult_reg_l : forall n m p:Z, p <> Z0 -> p * n = p * m -> n = m.
Proof.
  intros x y z H H0.
  generalize (Zeq_minus _ _ H0).
  intro.
  apply Zminus_eq.
  rewrite <- Zmult_minus_distr_l in H1.
  clear H0; destruct (Zmult_integral _ _ H1).
  contradiction.
  trivial.
Qed.

Lemma Zmult_reg_r : forall n m p:Z, p <> Z0 -> n * p = m * p -> n = m.
Proof.
  intros x y z Hz.
  rewrite (Zmult_comm x z).
  rewrite (Zmult_comm y z).
  intro; apply Zmult_reg_l with z; assumption.
Qed.

Addition and multiplication by 2


Lemma Zplus_diag_eq_mult_2 : forall n:Z, n + n = n * Zpos 2.
Proof.
  intros x; pattern x at 1 2 in |- *; rewrite <- (Zmult_1_r x);
    rewrite <- Zmult_plus_distr_r; reflexivity.
Qed.

Multiplication and successor


Lemma Zmult_succ_r : forall n m:Z, n * Zsucc m = n * m + n.
Proof.
  intros n m; unfold Zsucc in |- *; rewrite Zmult_plus_distr_r;
    rewrite (Zmult_comm n (Zpos 1)); rewrite Zmult_1_l;
      trivial with arith.
Qed.

Lemma Zmult_succ_r_reverse : forall n m:Z, n * m + n = n * Zsucc m.
Proof.
  intros; symmetry in |- *; apply Zmult_succ_r.
Qed.

Lemma Zmult_succ_l : forall n m:Z, Zsucc n * m = n * m + m.
Proof.
  intros n m; unfold Zsucc in |- *; rewrite Zmult_plus_distr_l;
    rewrite Zmult_1_l; trivial with arith.
Qed.

Lemma Zmult_succ_l_reverse : forall n m:Z, n * m + m = Zsucc n * m.
Proof.
  intros; symmetry in |- *; apply Zmult_succ_l.
Qed.

Misc redundant properties


Lemma Z_eq_mult : forall n m:Z, m = Z0 -> m * n = Z0.
Proof.
  intros x y H; rewrite H; auto with arith.
Qed.

Relating binary positive numbers and binary integers


Lemma Zpos_xI : forall p:positive, Zpos (xI p) = Zpos 2 * Zpos p + Zpos 1.
Proof.
  intro; apply refl_equal.
Qed.

Lemma Zpos_xO : forall p:positive, Zpos (xO p) = Zpos 2 * Zpos p.
Proof.
  intro; apply refl_equal.
Qed.

Lemma Zneg_xI : forall p:positive, Zneg (xI p) = Zpos 2 * Zneg p - Zpos 1.
Proof.
  intro; apply refl_equal.
Qed.

Lemma Zneg_xO : forall p:positive, Zneg (xO p) = Zpos 2 * Zneg p.
Proof.
  reflexivity.
Qed.

Lemma Zpos_plus_distr : forall p q:positive, Zpos (p + q) = Zpos p + Zpos q.
Proof.
  intros p p'; destruct p;
    [ destruct p' as [p0| p0| ]
      | destruct p' as [p0| p0| ]
      | destruct p' as [p| p| ] ]; reflexivity.
Qed.

Lemma Zneg_plus_distr : forall p q:positive, Zneg (p + q) = Zneg p + Zneg q.
Proof.
  intros p p'; destruct p;
    [ destruct p' as [p0| p0| ]
      | destruct p' as [p0| p0| ]
      | destruct p' as [p| p| ] ]; reflexivity.
Qed.

Order relations


Definition Zlt (x y:Z) := (x ?= y) = Lt.
Definition Zgt (x y:Z) := (x ?= y) = Gt.
Definition Zle (x y:Z) := (x ?= y) <> Gt.
Definition Zge (x y:Z) := (x ?= y) <> Lt.
Definition Zne (x y:Z) := x <> y.

Infix "<=" := Zle : Z_scope.
Infix "<" := Zlt : Z_scope.
Infix ">=" := Zge : Z_scope.
Infix ">" := Zgt : Z_scope.

Notation "x <= y <= z" := (x <= y /\ y <= z) : Z_scope.
Notation "x <= y < z" := (x <= y /\ y < z) : Z_scope.
Notation "x < y < z" := (x < y /\ y < z) : Z_scope.
Notation "x < y <= z" := (x < y /\ y <= z) : Z_scope.

Absolute value on integers


Definition Zabs_nat (x:Z) : nat :=
  match x with
    | Z0 => 0%nat
    | Zpos p => nat_of_P p
    | Zneg p => nat_of_P p
  end.

Definition Zabs (z:Z) : Z :=
  match z with
    | Z0 => Z0
    | Zpos p => Zpos p
    | Zneg p => Zpos p
  end.

From nat to Z


Definition Z_of_nat (x:nat) :=
  match x with
    | O => Z0
    | S y => Zpos (P_of_succ_nat y)
  end.

Require Import BinNat.

Definition Zabs_N (z:Z) :=
  match z with
    | Z0 => 0%N
    | Zpos p => Npos p
    | Zneg p => Npos p
  end.

Definition Z_of_N (x:N) := match x with
                             | N0 => Z0
                             | Npos p => Zpos p
                           end.