Library Coq.ZArith.Zmax
Require Import Arith_base.
Require Import BinInt.
Require Import Zcompare.
Require Import Zorder.
Open Local Scope Z_scope.
Maximum of two binary integer numbers
Definition Zmax m n :=
match m ?= n with
| Eq | Gt => m
| Lt => n
end.
Lemma Zmax_case : forall (n m:Z) (P:Z -> Type), P n -> P m -> P (Zmax n m).
Proof.
intros n m P H1 H2; unfold Zmax in |- *; case (n ?= m); auto with arith.
Qed.
Lemma Zmax_case_strong : forall (n m:Z) (P:Z -> Type),
(m<=n -> P n) -> (n<=m -> P m) -> P (Zmax n m).
Proof.
intros n m P H1 H2; unfold Zmax, Zle, Zge in *.
rewrite <- (Zcompare_antisym n m) in H1.
destruct (n ?= m); (apply H1|| apply H2); discriminate.
Qed.
Lemma Zle_max_l : forall n m:Z, n <= Zmax n m.
Proof.
intros; apply Zmax_case_strong; auto with zarith.
Qed.
Notation Zmax1 := Zle_max_l (only parsing).
Lemma Zle_max_r : forall n m:Z, m <= Zmax n m.
Proof.
intros; apply Zmax_case_strong; auto with zarith.
Qed.
Notation Zmax2 := Zle_max_r (only parsing).
Lemma Zmax_lub : forall n m p:Z, n <= p -> m <= p -> Zmax n m <= p.
Proof.
intros; apply Zmax_case; assumption.
Qed.
Lemma Zmax_idempotent : forall n:Z, Zmax n n = n.
Proof.
intros; apply Zmax_case; auto.
Qed.
Lemma Zmax_comm : forall n m:Z, Zmax n m = Zmax m n.
Proof.
intros; do 2 apply Zmax_case_strong; intros;
apply Zle_antisym; auto with zarith.
Qed.
Lemma Zmax_assoc : forall n m p:Z, Zmax n (Zmax m p) = Zmax (Zmax n m) p.
Proof.
intros n m p; repeat apply Zmax_case_strong; intros;
reflexivity || (try apply Zle_antisym); eauto with zarith.
Qed.
Lemma Zmax_irreducible_inf : forall n m:Z, Zmax n m = n \/ Zmax n m = m.
Proof.
intros; apply Zmax_case; auto.
Qed.
Lemma Zmax_le_prime_inf : forall n m p:Z, p <= Zmax n m -> p <= n \/ p <= m.
Proof.
intros n m p; apply Zmax_case; auto.
Qed.
Lemma Zsucc_max_distr :
forall n m:Z, Zsucc (Zmax n m) = Zmax (Zsucc n) (Zsucc m).
Proof.
intros n m; unfold Zmax in |- *; rewrite (Zcompare_succ_compat n m);
elim_compare n m; intros E; rewrite E; auto with arith.
Qed.
Lemma Zplus_max_distr_r : forall n m p:Z, Zmax (n + p) (m + p) = Zmax n m + p.
Proof.
intros x y n; unfold Zmax in |- *.
rewrite (Zplus_comm x n); rewrite (Zplus_comm y n);
rewrite (Zcompare_plus_compat x y n).
case (x ?= y); apply Zplus_comm.
Qed.