Library Coq.FSets.FSetFacts
This functor derives additional facts from
FSetInterface.S
. These
facts are mainly the specifications of FSetInterface.S
written using
different styles: equivalence and boolean equalities.
Moreover, we prove that E.Eq
and Equal
are setoid equalities.
Require Export FSetInterface.
Set Implicit Arguments.
Unset Strict Implicit.
Module Facts (M: S).
Module ME := OrderedTypeFacts M.E.
Import ME.
Import M.
Import Logic.
Import Peano.
Section IffSpec.
Variable s s' s'' : t.
Variable x y z : elt.
Lemma In_eq_iff : E.eq x y -> (In x s <-> In y s).
Proof.
split; apply In_1; auto.
Qed.
Lemma mem_iff : In x s <-> mem x s = true.
Proof.
split; [apply mem_1|apply mem_2].
Qed.
Lemma not_mem_iff : ~In x s <-> mem x s = false.
Proof.
rewrite mem_iff; destruct (mem x s); intuition.
Qed.
Lemma equal_iff : s[=]s' <-> equal s s' = true.
Proof.
split; [apply equal_1|apply equal_2].
Qed.
Lemma subset_iff : s[<=]s' <-> subset s s' = true.
Proof.
split; [apply subset_1|apply subset_2].
Qed.
Lemma empty_iff : In x empty <-> False.
Proof.
intuition; apply (empty_1 H).
Qed.
Lemma is_empty_iff : Empty s <-> is_empty s = true.
Proof.
split; [apply is_empty_1|apply is_empty_2].
Qed.
Lemma singleton_iff : In y (singleton x) <-> E.eq x y.
Proof.
split; [apply singleton_1|apply singleton_2].
Qed.
Lemma add_iff : In y (add x s) <-> E.eq x y \/ In y s.
Proof.
split; [ | destruct 1; [apply add_1|apply add_2]]; auto.
destruct (eq_dec x y) as [E|E]; auto.
intro H; right; exact (add_3 E H).
Qed.
Lemma add_neq_iff : ~ E.eq x y -> (In y (add x s) <-> In y s).
Proof.
split; [apply add_3|apply add_2]; auto.
Qed.
Lemma remove_iff : In y (remove x s) <-> In y s /\ ~E.eq x y.
Proof.
split; [split; [apply remove_3 with x |] | destruct 1; apply remove_2]; auto.
intro.
apply (remove_1 H0 H).
Qed.
Lemma remove_neq_iff : ~ E.eq x y -> (In y (remove x s) <-> In y s).
Proof.
split; [apply remove_3|apply remove_2]; auto.
Qed.
Lemma union_iff : In x (union s s') <-> In x s \/ In x s'.
Proof.
split; [apply union_1 | destruct 1; [apply union_2|apply union_3]]; auto.
Qed.
Lemma inter_iff : In x (inter s s') <-> In x s /\ In x s'.
Proof.
split; [split; [apply inter_1 with s' | apply inter_2 with s] | destruct 1; apply inter_3]; auto.
Qed.
Lemma diff_iff : In x (diff s s') <-> In x s /\ ~ In x s'.
Proof.
split; [split; [apply diff_1 with s' | apply diff_2 with s] | destruct 1; apply diff_3]; auto.
Qed.
Variable f : elt->bool.
Lemma filter_iff : compat_bool E.eq f -> (In x (filter f s) <-> In x s /\ f x = true).
Proof.
split; [split; [apply filter_1 with f | apply filter_2 with s] | destruct 1; apply filter_3]; auto.
Qed.
Lemma for_all_iff : compat_bool E.eq f ->
(For_all (fun x => f x = true) s <-> for_all f s = true).
Proof.
split; [apply for_all_1 | apply for_all_2]; auto.
Qed.
Lemma exists_iff : compat_bool E.eq f ->
(Exists (fun x => f x = true) s <-> exists_ f s = true).
Proof.
split; [apply exists_1 | apply exists_2]; auto.
Qed.
Lemma elements_iff : In x s <-> InA E.eq x (elements s).
Proof.
split; [apply elements_1 | apply elements_2].
Qed.
End IffSpec.
Useful tactic for simplifying expressions like
In y (add x (union s s'))
Ltac set_iff :=
repeat (progress (
rewrite add_iff || rewrite remove_iff || rewrite singleton_iff
|| rewrite union_iff || rewrite inter_iff || rewrite diff_iff
|| rewrite empty_iff)).
Section BoolSpec.
Variable s s' s'' : t.
Variable x y z : elt.
Lemma mem_b : E.eq x y -> mem x s = mem y s.
Proof.
intros.
generalize (mem_iff s x) (mem_iff s y)(In_eq_iff s H).
destruct (mem x s); destruct (mem y s); intuition.
Qed.
Lemma empty_b : mem y empty = false.
Proof.
generalize (empty_iff y)(mem_iff empty y).
destruct (mem y empty); intuition.
Qed.
Lemma add_b : mem y (add x s) = eqb x y || mem y s.
Proof.
generalize (mem_iff (add x s) y)(mem_iff s y)(add_iff s x y); unfold eqb.
destruct (eq_dec x y); destruct (mem y s); destruct (mem y (add x s)); intuition.
Qed.
Lemma add_neq_b : ~ E.eq x y -> mem y (add x s) = mem y s.
Proof.
intros; generalize (mem_iff (add x s) y)(mem_iff s y)(add_neq_iff s H).
destruct (mem y s); destruct (mem y (add x s)); intuition.
Qed.
Lemma remove_b : mem y (remove x s) = mem y s && negb (eqb x y).
Proof.
generalize (mem_iff (remove x s) y)(mem_iff s y)(remove_iff s x y); unfold eqb.
destruct (eq_dec x y); destruct (mem y s); destruct (mem y (remove x s)); simpl; intuition.
Qed.
Lemma remove_neq_b : ~ E.eq x y -> mem y (remove x s) = mem y s.
Proof.
intros; generalize (mem_iff (remove x s) y)(mem_iff s y)(remove_neq_iff s H).
destruct (mem y s); destruct (mem y (remove x s)); intuition.
Qed.
Lemma singleton_b : mem y (singleton x) = eqb x y.
Proof.
generalize (mem_iff (singleton x) y)(singleton_iff x y); unfold eqb.
destruct (eq_dec x y); destruct (mem y (singleton x)); intuition.
Qed.
Lemma union_b : mem x (union s s') = mem x s || mem x s'.
Proof.
generalize (mem_iff (union s s') x)(mem_iff s x)(mem_iff s' x)(union_iff s s' x).
destruct (mem x s); destruct (mem x s'); destruct (mem x (union s s')); intuition.
Qed.
Lemma inter_b : mem x (inter s s') = mem x s && mem x s'.
Proof.
generalize (mem_iff (inter s s') x)(mem_iff s x)(mem_iff s' x)(inter_iff s s' x).
destruct (mem x s); destruct (mem x s'); destruct (mem x (inter s s')); intuition.
Qed.
Lemma diff_b : mem x (diff s s') = mem x s && negb (mem x s').
Proof.
generalize (mem_iff (diff s s') x)(mem_iff s x)(mem_iff s' x)(diff_iff s s' x).
destruct (mem x s); destruct (mem x s'); destruct (mem x (diff s s')); simpl; intuition.
Qed.
Lemma elements_b : mem x s = existsb (eqb x) (elements s).
Proof.
generalize (mem_iff s x)(elements_iff s x)(existsb_exists (eqb x) (elements s)).
rewrite InA_alt.
destruct (mem x s); destruct (existsb (eqb x) (elements s)); auto; intros.
symmetry.
rewrite H1.
destruct H0 as (H0,_).
destruct H0 as (a,(Ha1,Ha2)); [ intuition |].
exists a; intuition.
unfold eqb; destruct (eq_dec x a); auto.
rewrite <- H.
rewrite H0.
destruct H1 as (H1,_).
destruct H1 as (a,(Ha1,Ha2)); [intuition|].
exists a; intuition.
unfold eqb in *; destruct (eq_dec x a); auto; discriminate.
Qed.
Variable f : elt->bool.
Lemma filter_b : compat_bool E.eq f -> mem x (filter f s) = mem x s && f x.
Proof.
intros.
generalize (mem_iff (filter f s) x)(mem_iff s x)(filter_iff s x H).
destruct (mem x s); destruct (mem x (filter f s)); destruct (f x); simpl; intuition.
Qed.
Lemma for_all_b : compat_bool E.eq f ->
for_all f s = forallb f (elements s).
Proof.
intros.
generalize (forallb_forall f (elements s))(for_all_iff s H)(elements_iff s).
unfold For_all.
destruct (forallb f (elements s)); destruct (for_all f s); auto; intros.
rewrite <- H1; intros.
destruct H0 as (H0,_).
rewrite (H2 x0) in H3.
rewrite (InA_alt E.eq x0 (elements s)) in H3.
destruct H3 as (a,(Ha1,Ha2)).
rewrite (H _ _ Ha1).
apply H0; auto.
symmetry.
rewrite H0; intros.
destruct H1 as (_,H1).
apply H1; auto.
Qed.
Lemma exists_b : compat_bool E.eq f ->
exists_ f s = existsb f (elements s).
Proof.
intros.
generalize (existsb_exists f (elements s))(exists_iff s H)(elements_iff s).
unfold Exists.
destruct (existsb f (elements s)); destruct (exists_ f s); auto; intros.
rewrite <- H1; intros.
destruct H0 as (H0,_).
destruct H0 as (a,(Ha1,Ha2)); auto.
exists a; auto.
symmetry.
rewrite H0.
destruct H1 as (_,H1).
destruct H1 as (a,(Ha1,Ha2)); auto.
rewrite (H2 a) in Ha1.
rewrite (InA_alt E.eq a (elements s)) in Ha1.
destruct Ha1 as (b,(Hb1,Hb2)).
exists b; auto.
rewrite <- (H _ _ Hb1); auto.
Qed.
End BoolSpec.
Definition E_ST : Setoid_Theory elt E.eq.
Proof.
constructor; [apply E.eq_refl|apply E.eq_sym|apply E.eq_trans].
Qed.
Add Setoid elt E.eq E_ST as EltSetoid.
Definition Equal_ST : Setoid_Theory t Equal.
Proof.
constructor; [apply eq_refl | apply eq_sym | apply eq_trans].
Qed.
Add Setoid t Equal Equal_ST as EqualSetoid.
Add Morphism In with signature E.eq ==> Equal ==> iff as In_m.
Proof.
unfold Equal; intros x y H s s' H0.
rewrite (In_eq_iff s H); auto.
Qed.
Add Morphism is_empty : is_empty_m.
Proof.
unfold Equal; intros s s' H.
generalize (is_empty_iff s)(is_empty_iff s').
destruct (is_empty s); destruct (is_empty s');
unfold Empty; auto; intros.
symmetry.
rewrite <- H1; intros a Ha.
rewrite <- (H a) in Ha.
destruct H0 as (_,H0).
exact (H0 (refl_equal true) _ Ha).
rewrite <- H0; intros a Ha.
rewrite (H a) in Ha.
destruct H1 as (_,H1).
exact (H1 (refl_equal true) _ Ha).
Qed.
Add Morphism Empty with signature Equal ==> iff as Empty_m.
Proof.
intros; do 2 rewrite is_empty_iff; rewrite H; intuition.
Qed.
Add Morphism mem : mem_m.
Proof.
unfold Equal; intros x y H s s' H0.
generalize (H0 x); clear H0; rewrite (In_eq_iff s' H).
generalize (mem_iff s x)(mem_iff s' y).
destruct (mem x s); destruct (mem y s'); intuition.
Qed.
Add Morphism singleton : singleton_m.
Proof.
unfold Equal; intros x y H a.
do 2 rewrite singleton_iff; split; order.
Qed.
Add Morphism add : add_m.
Proof.
unfold Equal; intros x y H s s' H0 a.
do 2 rewrite add_iff; rewrite H; rewrite H0; intuition.
Qed.
Add Morphism remove : remove_m.
Proof.
unfold Equal; intros x y H s s' H0 a.
do 2 rewrite remove_iff; rewrite H; rewrite H0; intuition.
Qed.
Add Morphism union : union_m.
Proof.
unfold Equal; intros s s' H s'' s''' H0 a.
do 2 rewrite union_iff; rewrite H; rewrite H0; intuition.
Qed.
Add Morphism inter : inter_m.
Proof.
unfold Equal; intros s s' H s'' s''' H0 a.
do 2 rewrite inter_iff; rewrite H; rewrite H0; intuition.
Qed.
Add Morphism diff : diff_m.
Proof.
unfold Equal; intros s s' H s'' s''' H0 a.
do 2 rewrite diff_iff; rewrite H; rewrite H0; intuition.
Qed.
Add Morphism Subset with signature Equal ==> Equal ==> iff as Subset_m.
Proof.
unfold Equal, Subset; firstorder.
Qed.
Add Morphism subset : subset_m.
Proof.
intros s s' H s'' s''' H0.
generalize (subset_iff s s'') (subset_iff s' s''').
destruct (subset s s''); destruct (subset s' s'''); auto; intros.
rewrite H in H1; rewrite H0 in H1; intuition.
rewrite H in H1; rewrite H0 in H1; intuition.
Qed.
Add Morphism equal : equal_m.
Proof.
intros s s' H s'' s''' H0.
generalize (equal_iff s s'') (equal_iff s' s''').
destruct (equal s s''); destruct (equal s' s'''); auto; intros.
rewrite H in H1; rewrite H0 in H1; intuition.
rewrite H in H1; rewrite H0 in H1; intuition.
Qed.
Lemma filter_equal : forall f, compat_bool E.eq f ->
forall s s', s[=]s' -> filter f s [=] filter f s'.
Proof.
unfold Equal; intros; repeat rewrite filter_iff; auto; rewrite H0; tauto.
Qed.
End Facts.