Library Coq.Logic.Classical_Pred_Set

This file is obsolete, use Classical_Pred_Type.v via Classical.v instead

Classical Predicate Logic on Set

Require Import Classical_Pred_Type.

Section Generic.
Variable U : Set.

de Morgan laws for quantifiers

Lemma not_all_ex_not :
 forall P:U -> Prop, ~ (forall n:U, P n) -> exists n : U, ~ P n.
Proof (Classical_Pred_Type.not_all_ex_not U).

Lemma not_all_not_ex :
 forall P:U -> Prop, ~ (forall n:U, ~ P n) -> exists n : U, P n.
Proof (Classical_Pred_Type.not_all_not_ex U).

Lemma not_ex_all_not :
 forall P:U -> Prop, ~ (exists n : U, P n) -> forall n:U, ~ P n.
Proof (Classical_Pred_Type.not_ex_all_not U).

Lemma not_ex_not_all :
 forall P:U -> Prop, ~ (exists n : U, ~ P n) -> forall n:U, P n.
Proof (Classical_Pred_Type.not_ex_not_all U).

Lemma ex_not_not_all :
 forall P:U -> Prop, (exists n : U, ~ P n) -> ~ (forall n:U, P n).
Proof (Classical_Pred_Type.ex_not_not_all U).

Lemma all_not_not_ex :
 forall P:U -> Prop, (forall n:U, ~ P n) -> ~ (exists n : U, P n).
Proof (Classical_Pred_Type.all_not_not_ex U).

End Generic.