Library Coq.Logic.Classical_Pred_Set
This file is obsolete, use Classical_Pred_Type.v via Classical.v
instead
Classical Predicate Logic on Set
Require Import Classical_Pred_Type.
Section Generic.
Variable U : Set.
de Morgan laws for quantifiers
Lemma not_all_ex_not :
forall P:U -> Prop, ~ (forall n:U, P n) -> exists n : U, ~ P n.
Proof (Classical_Pred_Type.not_all_ex_not U).
Lemma not_all_not_ex :
forall P:U -> Prop, ~ (forall n:U, ~ P n) -> exists n : U, P n.
Proof (Classical_Pred_Type.not_all_not_ex U).
Lemma not_ex_all_not :
forall P:U -> Prop, ~ (exists n : U, P n) -> forall n:U, ~ P n.
Proof (Classical_Pred_Type.not_ex_all_not U).
Lemma not_ex_not_all :
forall P:U -> Prop, ~ (exists n : U, ~ P n) -> forall n:U, P n.
Proof (Classical_Pred_Type.not_ex_not_all U).
Lemma ex_not_not_all :
forall P:U -> Prop, (exists n : U, ~ P n) -> ~ (forall n:U, P n).
Proof (Classical_Pred_Type.ex_not_not_all U).
Lemma all_not_not_ex :
forall P:U -> Prop, (forall n:U, ~ P n) -> ~ (exists n : U, P n).
Proof (Classical_Pred_Type.all_not_not_ex U).
End Generic.