Library Coq.Init.Peano

The type nat of Peano natural numbers (built from O and S) is defined in Datatypes.v

This module defines the following operations on natural numbers :
  • predecessor pred
  • addition plus
  • multiplication mult
  • less or equal order le
  • less lt
  • greater or equal ge
  • greater gt


It states various lemmas and theorems about natural numbers, including Peano's axioms of arithmetic (in Coq, these are provable). Case analysis on nat and induction on nat * nat are provided too

Require Import Notations.
Require Import Datatypes.
Require Import Logic.
Unset Boxed Definitions.

Open Scope nat_scope.

Definition eq_S := f_equal S.

Hint Resolve (f_equal S): v62.
Hint Resolve (f_equal (A:=nat)): core.

The predecessor function

Definition pred (n:nat) : nat := match n with
                                 | O => 0
                                 | S u => u
                                 end.
Hint Resolve (f_equal pred): v62.

Theorem pred_Sn : forall n:nat, n = pred (S n).
Proof.
  simpl; reflexivity.
Qed.

Injectivity of successor

Theorem eq_add_S : forall n m:nat, S n = S m -> n = m.
Proof.
  intros n m Sn_eq_Sm.
  replace (n=m) with (pred (S n) = pred (S m)) by auto using pred_Sn.
  rewrite Sn_eq_Sm; trivial.
Qed.

Hint Immediate eq_add_S: core v62.

Theorem not_eq_S : forall n m:nat, n <> m -> S n <> S m.
Proof.
  red in |- *; auto.
Qed.
Hint Resolve not_eq_S: core v62.

Definition IsSucc (n:nat) : Prop :=
  match n with
  | O => False
  | S p => True
  end.

Zero is not the successor of a number

Theorem O_S : forall n:nat, 0 <> S n.
Proof.
  unfold not; intros n H.
  inversion H.
Qed.
Hint Resolve O_S: core v62.

Theorem n_Sn : forall n:nat, n <> S n.
Proof.
  induction n; auto.
Qed.
Hint Resolve n_Sn: core v62.

Addition

Fixpoint plus (n m:nat) {struct n} : nat :=
  match n with
  | O => m
  | S p => S (p + m)
  end

where "n + m" := (plus n m) : nat_scope.

Hint Resolve (f_equal2 plus): v62.
Hint Resolve (f_equal2 (A1:=nat) (A2:=nat)): core.

Lemma plus_n_O : forall n:nat, n = n + 0.
Proof.
  induction n; simpl in |- *; auto.
Qed.
Hint Resolve plus_n_O: core v62.

Lemma plus_O_n : forall n:nat, 0 + n = n.
Proof.
  auto.
Qed.

Lemma plus_n_Sm : forall n m:nat, S (n + m) = n + S m.
Proof.
  intros n m; induction n; simpl in |- *; auto.
Qed.
Hint Resolve plus_n_Sm: core v62.

Lemma plus_Sn_m : forall n m:nat, S n + m = S (n + m).
Proof.
  auto.
Qed.

Multiplication

Fixpoint mult (n m:nat) {struct n} : nat :=
  match n with
  | O => 0
  | S p => m + p * m
  end

where "n * m" := (mult n m) : nat_scope.

Hint Resolve (f_equal2 mult): core v62.

Lemma mult_n_O : forall n:nat, 0 = n * 0.
Proof.
  induction n; simpl in |- *; auto.
Qed.
Hint Resolve mult_n_O: core v62.

Lemma mult_n_Sm : forall n m:nat, n * m + n = n * S m.
Proof.
  intros; induction n as [| p H]; simpl in |- *; auto.
  destruct H; rewrite <- plus_n_Sm; apply (f_equal S).
  pattern m at 1 3 in |- *; elim m; simpl in |- *; auto.
Qed.
Hint Resolve mult_n_Sm: core v62.

Truncated subtraction: m-n is 0 if n>=m

Fixpoint minus (n m:nat) {struct n} : nat :=
  match n, m with
  | O, _ => 0
  | S k, O => S k
  | S k, S l => k - l
  end

where "n - m" := (minus n m) : nat_scope.

Definition of the usual orders, the basic properties of le and lt can be found in files Le and Lt

Inductive le (n:nat) : nat -> Prop :=
  | le_n : n <= n
  | le_S : forall m:nat, n <= m -> n <= S m

where "n <= m" := (le n m) : nat_scope.

Hint Constructors le: core v62.
Definition lt (n m:nat) := S n <= m.
Hint Unfold lt: core v62.

Infix "<" := lt : nat_scope.

Definition ge (n m:nat) := m <= n.
Hint Unfold ge: core v62.

Infix ">=" := ge : nat_scope.

Definition gt (n m:nat) := m < n.
Hint Unfold gt: core v62.

Infix ">" := gt : nat_scope.

Notation "x <= y <= z" := (x <= y /\ y <= z) : nat_scope.
Notation "x <= y < z" := (x <= y /\ y < z) : nat_scope.
Notation "x < y < z" := (x < y /\ y < z) : nat_scope.
Notation "x < y <= z" := (x < y /\ y <= z) : nat_scope.

Case analysis

Theorem nat_case :
 forall (n:nat) (P:nat -> Prop), P 0 -> (forall m:nat, P (S m)) -> P n.
Proof.
  induction n; auto.
Qed.

Principle of double induction

Theorem nat_double_ind :
 forall R:nat -> nat -> Prop,
   (forall n:nat, R 0 n) ->
   (forall n:nat, R (S n) 0) ->
   (forall n m:nat, R n m -> R (S n) (S m)) -> forall n m:nat, R n m.
Proof.
  induction n; auto.
  destruct m as [| n0]; auto.
Qed.

Notations