Library Coq.Relations.Newman

Require Import Rstar.

Section Newman.

Variable A : Type.
Variable R : A -> A -> Prop.

Let Rstar := Rstar A R.
Let Rstar_reflexive := Rstar_reflexive A R.
Let Rstar_transitive := Rstar_transitive A R.
Let Rstar_Rstar' := Rstar_Rstar' A R.

Definition coherence (x y:A) := ex2 (Rstar x) (Rstar y).

Theorem coherence_intro :
  forall x y z:A, Rstar x z -> Rstar y z -> coherence x y.
Proof fun (x y z:A) (h1:Rstar x z) (h2:Rstar y z) =>
  ex_intro2 (Rstar x) (Rstar y) z h1 h2.

A very simple case of coherence :

Lemma Rstar_coherence : forall x y:A, Rstar x y -> coherence x y.
Proof
  fun (x y:A) (h:Rstar x y) => coherence_intro x y y h (Rstar_reflexive y).

coherence is symmetric
Lemma coherence_sym : forall x y:A, coherence x y -> coherence y x.
Proof
  fun (x y:A) (h:coherence x y) =>
    ex2_ind
      (fun (w:A) (h1:Rstar x w) (h2:Rstar y w) =>
        coherence_intro y x w h2 h1) h.

Definition confluence (x:A) :=
  forall y z:A, Rstar x y -> Rstar x z -> coherence y z.

Definition local_confluence (x:A) :=
  forall y z:A, R x y -> R x z -> coherence y z.

Definition noetherian :=
  forall (x:A) (P:A -> Prop),
    (forall y:A, (forall z:A, R y z -> P z) -> P y) -> P x.

Section Newman_section.

The general hypotheses of the theorem

  Hypothesis Hyp1 : noetherian.
  Hypothesis Hyp2 : forall x:A, local_confluence x.

The induction hypothesis

  Section Induct.
    Variable x : A.
    Hypothesis hyp_ind : forall u:A, R x u -> confluence u.

Confluence in x

    Variables y z : A.
    Hypothesis h1 : Rstar x y.
    Hypothesis h2 : Rstar x z.

particular case x->u and u->*y
    Section Newman_.
      Variable u : A.
      Hypothesis t1 : R x u.
      Hypothesis t2 : Rstar u y.

In the usual diagram, we assume also x->v and v->*z

      Theorem Diagram : forall (v:A) (u1:R x v) (u2:Rstar v z), coherence y z.
      Proof
             fun (v:A) (u1:R x v) (u2:Rstar v z) =>
        ex2_ind
                          (fun (w:A) (s1:Rstar u w) (s2:Rstar v w) =>
          ex2_ind
                                      (fun (a:A) (v1:Rstar y a) (v2:Rstar w a) =>
            ex2_ind
                                        (fun (b:A) (w1:Rstar a b) (w2:Rstar z b) =>
              coherence_intro y z b (Rstar_transitive y a b v1 w1) w2)
            (hyp_ind v u1 a z (Rstar_transitive v w a s2 v2) u2))
          (hyp_ind u t1 y w t2 s1)) (Hyp2 x u v t1 u1).

      Theorem caseRxy : coherence y z.
      Proof
        Rstar_Rstar' x z h2 (fun v w:A => coherence y w)
        (coherence_sym x y (Rstar_coherence x y h1))         Diagram.
    End Newman_.

    Theorem Ind_proof : coherence y z.
    Proof
      Rstar_Rstar' x y h1 (fun u v:A => coherence v z)
      (Rstar_coherence x z h2)       caseRxy.
  End Induct.

  Theorem Newman : forall x:A, confluence x.
  Proof fun x:A => Hyp1 x confluence Ind_proof.

End Newman_section.

End Newman.