Library Coq.Sorting.Heap
A development of Treesort on Heap trees
Require Import List.
Require Import Multiset.
Require Import Permutation.
Require Import Relations.
Require Import Sorting.
Section defs.
Variable A : Set.
Variable leA : relation A.
Variable eqA : relation A.
Let gtA (x y:A) := ~ leA x y.
Hypothesis leA_dec : forall x y:A, {leA x y} + {leA y x}.
Hypothesis eqA_dec : forall x y:A, {eqA x y} + {~ eqA x y}.
Hypothesis leA_refl : forall x y:A, eqA x y -> leA x y.
Hypothesis leA_trans : forall x y z:A, leA x y -> leA y z -> leA x z.
Hypothesis leA_antisym : forall x y:A, leA x y -> leA y x -> eqA x y.
Hint Resolve leA_refl.
Hint Immediate eqA_dec leA_dec leA_antisym.
Let emptyBag := EmptyBag A.
Let singletonBag := SingletonBag _ eqA_dec.
Inductive Tree : Set :=
| Tree_Leaf : Tree
| Tree_Node : A -> Tree -> Tree -> Tree.
a
is lower than a Tree T
if T
is a Leaf
or T
is a Node holding b>a
Definition leA_Tree (a:A) (t:Tree) :=
match t with
| Tree_Leaf => True
| Tree_Node b T1 T2 => leA a b
end.
Lemma leA_Tree_Leaf : forall a:A, leA_Tree a Tree_Leaf.
Proof.
simpl in |- *; auto with datatypes.
Qed.
Lemma leA_Tree_Node :
forall (a b:A) (G D:Tree), leA a b -> leA_Tree a (Tree_Node b G D).
Proof.
simpl in |- *; auto with datatypes.
Qed.
Inductive is_heap : Tree -> Prop :=
| nil_is_heap : is_heap Tree_Leaf
| node_is_heap :
forall (a:A) (T1 T2:Tree),
leA_Tree a T1 ->
leA_Tree a T2 ->
is_heap T1 -> is_heap T2 -> is_heap (Tree_Node a T1 T2).
Lemma invert_heap :
forall (a:A) (T1 T2:Tree),
is_heap (Tree_Node a T1 T2) ->
leA_Tree a T1 /\ leA_Tree a T2 /\ is_heap T1 /\ is_heap T2.
Proof.
intros; inversion H; auto with datatypes.
Qed.
Lemma is_heap_rec :
forall P:Tree -> Set,
P Tree_Leaf ->
(forall (a:A) (T1 T2:Tree),
leA_Tree a T1 ->
leA_Tree a T2 ->
is_heap T1 -> P T1 -> is_heap T2 -> P T2 -> P (Tree_Node a T1 T2)) ->
forall T:Tree, is_heap T -> P T.
Proof.
simple induction T; auto with datatypes.
intros a G PG D PD PN.
elim (invert_heap a G D); auto with datatypes.
intros H1 H2; elim H2; intros H3 H4; elim H4; intros.
apply H0; auto with datatypes.
Qed.
Lemma low_trans :
forall (T:Tree) (a b:A), leA a b -> leA_Tree b T -> leA_Tree a T.
Proof.
simple induction T; auto with datatypes.
intros; simpl in |- *; apply leA_trans with b; auto with datatypes.
Qed.
contents of a tree as a multiset
Nota Bene : In what follows the definition of SingletonBag
in not used. Actually, we could just take as postulate:
Parameter SingletonBag : A->multiset
.
Fixpoint contents (t:Tree) : multiset A :=
match t with
| Tree_Leaf => emptyBag
| Tree_Node a t1 t2 =>
munion (contents t1) (munion (contents t2) (singletonBag a))
end.
equivalence of two trees is equality of corresponding multisets
Definition equiv_Tree (t1 t2:Tree) := meq (contents t1) (contents t2).
Inductive insert_spec (a:A) (T:Tree) : Set :=
insert_exist :
forall T1:Tree,
is_heap T1 ->
meq (contents T1) (munion (contents T) (singletonBag a)) ->
(forall b:A, leA b a -> leA_Tree b T -> leA_Tree b T1) ->
insert_spec a T.
Lemma insert : forall T:Tree, is_heap T -> forall a:A, insert_spec a T.
Proof.
simple induction 1; intros.
apply insert_exist with (Tree_Node a Tree_Leaf Tree_Leaf);
auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes.
simpl in |- *; unfold meq, munion in |- *; auto using node_is_heap with datatypes.
elim (leA_dec a a0); intros.
elim (H3 a0); intros.
apply insert_exist with (Tree_Node a T2 T0);
auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes.
simpl in |- *; apply treesort_twist1; trivial with datatypes.
elim (H3 a); intros T3 HeapT3 ConT3 LeA.
apply insert_exist with (Tree_Node a0 T2 T3);
auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes.
apply node_is_heap; auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes.
apply low_trans with a; auto with datatypes.
apply LeA; auto with datatypes.
apply low_trans with a; auto with datatypes.
simpl in |- *; apply treesort_twist2; trivial with datatypes.
Qed.
Inductive build_heap (l:list A) : Set :=
heap_exist :
forall T:Tree,
is_heap T ->
meq (list_contents _ eqA_dec l) (contents T) -> build_heap l.
Lemma list_to_heap : forall l:list A, build_heap l.
Proof.
simple induction l.
apply (heap_exist nil Tree_Leaf); auto with datatypes.
simpl in |- *; unfold meq in |- *; exact nil_is_heap.
simple induction 1.
intros T i m; elim (insert T i a).
intros; apply heap_exist with T1; simpl in |- *; auto with datatypes.
apply meq_trans with (munion (contents T) (singletonBag a)).
apply meq_trans with (munion (singletonBag a) (contents T)).
apply meq_right; trivial with datatypes.
apply munion_comm.
apply meq_sym; trivial with datatypes.
Qed.
Inductive flat_spec (T:Tree) : Set :=
flat_exist :
forall l:list A,
sort leA l ->
(forall a:A, leA_Tree a T -> lelistA leA a l) ->
meq (contents T) (list_contents _ eqA_dec l) -> flat_spec T.
Lemma heap_to_list : forall T:Tree, is_heap T -> flat_spec T.
Proof.
intros T h; elim h; intros.
apply flat_exist with (nil (A:=A)); auto with datatypes.
elim H2; intros l1 s1 i1 m1; elim H4; intros l2 s2 i2 m2.
elim (merge _ leA_dec eqA_dec s1 s2); intros.
apply flat_exist with (a :: l); simpl in |- *; auto with datatypes.
apply meq_trans with
(munion (list_contents _ eqA_dec l1)
(munion (list_contents _ eqA_dec l2) (singletonBag a))).
apply meq_congr; auto with datatypes.
apply meq_trans with
(munion (singletonBag a)
(munion (list_contents _ eqA_dec l1) (list_contents _ eqA_dec l2))).
apply munion_rotate.
apply meq_right; apply meq_sym; trivial with datatypes.
Qed.
Theorem treesort :
forall l:list A, {m : list A | sort leA m & permutation _ eqA_dec l m}.
Proof.
intro l; unfold permutation in |- *.
elim (list_to_heap l).
intros.
elim (heap_to_list T); auto with datatypes.
intros.
exists l0; auto with datatypes.
apply meq_trans with (contents T); trivial with datatypes.
Qed.
End defs.