Library Coq.Sorting.Heap

A development of Treesort on Heap trees

Require Import List.
Require Import Multiset.
Require Import Permutation.
Require Import Relations.
Require Import Sorting.

Section defs.

Trees and heap trees


Definition of trees over an ordered set


  Variable A : Set.
  Variable leA : relation A.
  Variable eqA : relation A.

  Let gtA (x y:A) := ~ leA x y.

  Hypothesis leA_dec : forall x y:A, {leA x y} + {leA y x}.
  Hypothesis eqA_dec : forall x y:A, {eqA x y} + {~ eqA x y}.
  Hypothesis leA_refl : forall x y:A, eqA x y -> leA x y.
  Hypothesis leA_trans : forall x y z:A, leA x y -> leA y z -> leA x z.
  Hypothesis leA_antisym : forall x y:A, leA x y -> leA y x -> eqA x y.

  Hint Resolve leA_refl.
  Hint Immediate eqA_dec leA_dec leA_antisym.

  Let emptyBag := EmptyBag A.
  Let singletonBag := SingletonBag _ eqA_dec.

  Inductive Tree : Set :=
    | Tree_Leaf : Tree
    | Tree_Node : A -> Tree -> Tree -> Tree.

a is lower than a Tree T if T is a Leaf or T is a Node holding b>a

  Definition leA_Tree (a:A) (t:Tree) :=
    match t with
      | Tree_Leaf => True
      | Tree_Node b T1 T2 => leA a b
    end.

  Lemma leA_Tree_Leaf : forall a:A, leA_Tree a Tree_Leaf.
  Proof.
    simpl in |- *; auto with datatypes.
  Qed.

  Lemma leA_Tree_Node :
    forall (a b:A) (G D:Tree), leA a b -> leA_Tree a (Tree_Node b G D).
  Proof.
    simpl in |- *; auto with datatypes.
  Qed.

The heap property


  Inductive is_heap : Tree -> Prop :=
    | nil_is_heap : is_heap Tree_Leaf
    | node_is_heap :
      forall (a:A) (T1 T2:Tree),
        leA_Tree a T1 ->
        leA_Tree a T2 ->
        is_heap T1 -> is_heap T2 -> is_heap (Tree_Node a T1 T2).

  Lemma invert_heap :
    forall (a:A) (T1 T2:Tree),
      is_heap (Tree_Node a T1 T2) ->
      leA_Tree a T1 /\ leA_Tree a T2 /\ is_heap T1 /\ is_heap T2.
  Proof.
    intros; inversion H; auto with datatypes.
  Qed.

  Lemma is_heap_rec :
    forall P:Tree -> Set,
      P Tree_Leaf ->
      (forall (a:A) (T1 T2:Tree),
        leA_Tree a T1 ->
        leA_Tree a T2 ->
        is_heap T1 -> P T1 -> is_heap T2 -> P T2 -> P (Tree_Node a T1 T2)) ->
      forall T:Tree, is_heap T -> P T.
  Proof.
    simple induction T; auto with datatypes.
    intros a G PG D PD PN.
    elim (invert_heap a G D); auto with datatypes.
    intros H1 H2; elim H2; intros H3 H4; elim H4; intros.
    apply H0; auto with datatypes.
  Qed.

  Lemma low_trans :
    forall (T:Tree) (a b:A), leA a b -> leA_Tree b T -> leA_Tree a T.
  Proof.
    simple induction T; auto with datatypes.
    intros; simpl in |- *; apply leA_trans with b; auto with datatypes.
  Qed.

From trees to multisets


contents of a tree as a multiset

Nota Bene : In what follows the definition of SingletonBag in not used. Actually, we could just take as postulate: Parameter SingletonBag : A->multiset.

  Fixpoint contents (t:Tree) : multiset A :=
    match t with
      | Tree_Leaf => emptyBag
      | Tree_Node a t1 t2 =>
        munion (contents t1) (munion (contents t2) (singletonBag a))
    end.

equivalence of two trees is equality of corresponding multisets
  Definition equiv_Tree (t1 t2:Tree) := meq (contents t1) (contents t2).

From lists to sorted lists


Specification of heap insertion


  Inductive insert_spec (a:A) (T:Tree) : Set :=
    insert_exist :
    forall T1:Tree,
      is_heap T1 ->
      meq (contents T1) (munion (contents T) (singletonBag a)) ->
      (forall b:A, leA b a -> leA_Tree b T -> leA_Tree b T1) ->
      insert_spec a T.

  Lemma insert : forall T:Tree, is_heap T -> forall a:A, insert_spec a T.
  Proof.
    simple induction 1; intros.
    apply insert_exist with (Tree_Node a Tree_Leaf Tree_Leaf);
      auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes.
    simpl in |- *; unfold meq, munion in |- *; auto using node_is_heap with datatypes.
    elim (leA_dec a a0); intros.
    elim (H3 a0); intros.
    apply insert_exist with (Tree_Node a T2 T0);
      auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes.
    simpl in |- *; apply treesort_twist1; trivial with datatypes.
    elim (H3 a); intros T3 HeapT3 ConT3 LeA.
    apply insert_exist with (Tree_Node a0 T2 T3);
      auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes.
    apply node_is_heap; auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes.
    apply low_trans with a; auto with datatypes.
    apply LeA; auto with datatypes.
    apply low_trans with a; auto with datatypes.
    simpl in |- *; apply treesort_twist2; trivial with datatypes.
  Qed.

Building a heap from a list


  Inductive build_heap (l:list A) : Set :=
    heap_exist :
    forall T:Tree,
      is_heap T ->
      meq (list_contents _ eqA_dec l) (contents T) -> build_heap l.

  Lemma list_to_heap : forall l:list A, build_heap l.
  Proof.
    simple induction l.
    apply (heap_exist nil Tree_Leaf); auto with datatypes.
    simpl in |- *; unfold meq in |- *; exact nil_is_heap.
    simple induction 1.
    intros T i m; elim (insert T i a).
    intros; apply heap_exist with T1; simpl in |- *; auto with datatypes.
    apply meq_trans with (munion (contents T) (singletonBag a)).
    apply meq_trans with (munion (singletonBag a) (contents T)).
    apply meq_right; trivial with datatypes.
    apply munion_comm.
    apply meq_sym; trivial with datatypes.
  Qed.

Building the sorted list


  Inductive flat_spec (T:Tree) : Set :=
    flat_exist :
    forall l:list A,
      sort leA l ->
      (forall a:A, leA_Tree a T -> lelistA leA a l) ->
      meq (contents T) (list_contents _ eqA_dec l) -> flat_spec T.

  Lemma heap_to_list : forall T:Tree, is_heap T -> flat_spec T.
  Proof.
    intros T h; elim h; intros.
    apply flat_exist with (nil (A:=A)); auto with datatypes.
    elim H2; intros l1 s1 i1 m1; elim H4; intros l2 s2 i2 m2.
    elim (merge _ leA_dec eqA_dec s1 s2); intros.
    apply flat_exist with (a :: l); simpl in |- *; auto with datatypes.
    apply meq_trans with
      (munion (list_contents _ eqA_dec l1)
        (munion (list_contents _ eqA_dec l2) (singletonBag a))).
    apply meq_congr; auto with datatypes.
    apply meq_trans with
      (munion (singletonBag a)
        (munion (list_contents _ eqA_dec l1) (list_contents _ eqA_dec l2))).
    apply munion_rotate.
    apply meq_right; apply meq_sym; trivial with datatypes.
  Qed.

Specification of treesort


  Theorem treesort :
    forall l:list A, {m : list A | sort leA m & permutation _ eqA_dec l m}.
  Proof.
    intro l; unfold permutation in |- *.
    elim (list_to_heap l).
    intros.
    elim (heap_to_list T); auto with datatypes.
    intros.
    exists l0; auto with datatypes.
    apply meq_trans with (contents T); trivial with datatypes.
  Qed.

End defs.