Library Coq.Bool.Bool
The type
bool
is defined in the prelude as
Inductive bool : Set := true : bool | false : bool
Interpretation of booleans as propositions
Definition Is_true (b:bool) :=
match b with
| true => True
| false => False
end.
Lemma bool_dec : forall b1 b2 : bool, {b1 = b2} + {b1 <> b2}.
Proof.
decide equality.
Defined.
Lemma diff_true_false : true <> false.
Proof.
unfold not in |- *; intro contr; change (Is_true false) in |- *.
elim contr; simpl in |- *; trivial.
Qed.
Hint Resolve diff_true_false : bool v62.
Lemma diff_false_true : false <> true.
Proof.
red in |- *; intros H; apply diff_true_false.
symmetry in |- *.
assumption.
Qed.
Hint Resolve diff_false_true : bool v62.
Hint Extern 1 (false <> true) => exact diff_false_true.
Lemma eq_true_false_abs : forall b:bool, b = true -> b = false -> False.
Proof.
intros b H; rewrite H; auto with bool.
Qed.
Lemma not_true_is_false : forall b:bool, b <> true -> b = false.
Proof.
destruct b.
intros.
red in H; elim H.
reflexivity.
intros abs.
reflexivity.
Qed.
Lemma not_false_is_true : forall b:bool, b <> false -> b = true.
Proof.
destruct b.
intros.
reflexivity.
intro H; red in H; elim H.
reflexivity.
Qed.
Definition leb (b1 b2:bool) :=
match b1 with
| true => b2 = true
| false => True
end.
Hint Unfold leb: bool v62.
Definition eqb (b1 b2:bool) : bool :=
match b1, b2 with
| true, true => true
| true, false => false
| false, true => false
| false, false => true
end.
Lemma eqb_subst :
forall (P:bool -> Prop) (b1 b2:bool), eqb b1 b2 = true -> P b1 -> P b2.
Proof.
unfold eqb in |- *.
intros P b1.
intros b2.
case b1.
case b2.
trivial with bool.
intros H.
inversion_clear H.
case b2.
intros H.
inversion_clear H.
trivial with bool.
Qed.
Lemma eqb_reflx : forall b:bool, eqb b b = true.
Proof.
intro b.
case b.
trivial with bool.
trivial with bool.
Qed.
Lemma eqb_prop : forall a b:bool, eqb a b = true -> a = b.
Proof.
destruct a; destruct b; simpl in |- *; intro; discriminate H || reflexivity.
Qed.
Definition ifb (b1 b2 b3:bool) : bool :=
match b1 with
| true => b2
| false => b3
end.
Definition andb (b1 b2:bool) : bool := ifb b1 b2 false.
Definition orb (b1 b2:bool) : bool := ifb b1 true b2.
Definition implb (b1 b2:bool) : bool := ifb b1 b2 true.
Definition xorb (b1 b2:bool) : bool :=
match b1, b2 with
| true, true => false
| true, false => true
| false, true => true
| false, false => false
end.
Definition negb (b:bool) := if b then false else true.
Infix "||" := orb (at level 50, left associativity) : bool_scope.
Infix "&&" := andb (at level 40, left associativity) : bool_scope.
Open Scope bool_scope.
Delimit Scope bool_scope with bool.
Bind Scope bool_scope with bool.
Lemma negb_orb : forall b1 b2:bool, negb (b1 || b2) = negb b1 && negb b2.
Proof.
destruct b1; destruct b2; simpl in |- *; reflexivity.
Qed.
Lemma negb_andb : forall b1 b2:bool, negb (b1 && b2) = negb b1 || negb b2.
Proof.
destruct b1; destruct b2; simpl in |- *; reflexivity.
Qed.
Lemma negb_involutive : forall b:bool, negb (negb b) = b.
Proof.
destruct b; reflexivity.
Qed.
Lemma negb_involutive_reverse : forall b:bool, b = negb (negb b).
Proof.
destruct b; reflexivity.
Qed.
Notation negb_elim := negb_involutive (only parsing).
Notation negb_intro := negb_involutive_reverse (only parsing).
Lemma negb_sym : forall b b':bool, b' = negb b -> b = negb b'.
Proof.
destruct b; destruct b'; intros; simpl in |- *; trivial with bool.
Qed.
Lemma no_fixpoint_negb : forall b:bool, negb b <> b.
Proof.
destruct b; simpl in |- *; intro; apply diff_true_false;
auto with bool.
Qed.
Lemma eqb_negb1 : forall b:bool, eqb (negb b) b = false.
Proof.
destruct b.
trivial with bool.
trivial with bool.
Qed.
Lemma eqb_negb2 : forall b:bool, eqb b (negb b) = false.
Proof.
destruct b.
trivial with bool.
trivial with bool.
Qed.
Lemma if_negb :
forall (A:Set) (b:bool) (x y:A),
(if negb b then x else y) = (if b then y else x).
Proof.
destruct b; trivial.
Qed.
Lemma orb_true_elim :
forall b1 b2:bool, b1 || b2 = true -> {b1 = true} + {b2 = true}.
Proof.
destruct b1; simpl in |- *; auto with bool.
Defined.
Lemma orb_prop : forall a b:bool, a || b = true -> a = true \/ b = true.
Proof.
destruct a; destruct b; simpl in |- *; try (intro H; discriminate H);
auto with bool.
Qed.
Lemma orb_true_intro :
forall b1 b2:bool, b1 = true \/ b2 = true -> b1 || b2 = true.
Proof.
destruct b1; auto with bool.
destruct 1; intros.
elim diff_true_false; auto with bool.
rewrite H; trivial with bool.
Qed.
Hint Resolve orb_true_intro: bool v62.
Lemma orb_false_intro :
forall b1 b2:bool, b1 = false -> b2 = false -> b1 || b2 = false.
Proof.
intros b1 b2 H1 H2; rewrite H1; rewrite H2; trivial with bool.
Qed.
Hint Resolve orb_false_intro: bool v62.
true
is a zero for orb
Lemma orb_true_r : forall b:bool, b || true = true.
Proof.
auto with bool.
Qed.
Hint Resolve orb_true_r: bool v62.
Lemma orb_true_l : forall b:bool, true || b = true.
Proof.
trivial with bool.
Qed.
Notation orb_b_true := orb_true_r (only parsing).
Notation orb_true_b := orb_true_l (only parsing).
false
is neutral for orb
Lemma orb_false_r : forall b:bool, b || false = b.
Proof.
destruct b; trivial with bool.
Qed.
Hint Resolve orb_false_r: bool v62.
Lemma orb_false_l : forall b:bool, false || b = b.
Proof.
destruct b; trivial with bool.
Qed.
Hint Resolve orb_false_l: bool v62.
Notation orb_b_false := orb_false_r (only parsing).
Notation orb_false_b := orb_false_l (only parsing).
Lemma orb_false_elim :
forall b1 b2:bool, b1 || b2 = false -> b1 = false /\ b2 = false.
Proof.
destruct b1.
intros; elim diff_true_false; auto with bool.
destruct b2.
intros; elim diff_true_false; auto with bool.
auto with bool.
Qed.
Complementation
Lemma orb_negb_r : forall b:bool, b || negb b = true.
Proof.
destruct b; reflexivity.
Qed.
Hint Resolve orb_negb_r: bool v62.
Notation orb_neg_b := orb_negb_r (only parsing).
Commutativity
Lemma orb_comm : forall b1 b2:bool, b1 || b2 = b2 || b1.
Proof.
destruct b1; destruct b2; reflexivity.
Qed.
Associativity
Lemma orb_assoc : forall b1 b2 b3:bool, b1 || (b2 || b3) = b1 || b2 || b3.
Proof.
destruct b1; destruct b2; destruct b3; reflexivity.
Qed.
Hint Resolve orb_comm orb_assoc: bool v62.
Lemma andb_prop : forall a b:bool, a && b = true -> a = true /\ b = true.
Proof.
destruct a; destruct b; simpl in |- *; try (intro H; discriminate H);
auto with bool.
Qed.
Hint Resolve andb_prop: bool v62.
Lemma andb_true_eq :
forall a b:bool, true = a && b -> true = a /\ true = b.
Proof.
destruct a; destruct b; auto.
Defined.
Lemma andb_true_intro :
forall b1 b2:bool, b1 = true /\ b2 = true -> b1 && b2 = true.
Proof.
destruct b1; destruct b2; simpl in |- *; tauto || auto with bool.
Qed.
Hint Resolve andb_true_intro: bool v62.
Lemma andb_false_intro1 : forall b1 b2:bool, b1 = false -> b1 && b2 = false.
Proof.
destruct b1; destruct b2; simpl in |- *; tauto || auto with bool.
Qed.
Lemma andb_false_intro2 : forall b1 b2:bool, b2 = false -> b1 && b2 = false.
Proof.
destruct b1; destruct b2; simpl in |- *; tauto || auto with bool.
Qed.
false
is a zero for andb
Lemma andb_false_r : forall b:bool, b && false = false.
Proof.
destruct b; auto with bool.
Qed.
Lemma andb_false_l : forall b:bool, false && b = false.
Proof.
trivial with bool.
Qed.
Notation andb_b_false := andb_false_r (only parsing).
Notation andb_false_b := andb_false_l (only parsing).
true
is neutral for andb
Lemma andb_true_r : forall b:bool, b && true = b.
Proof.
destruct b; auto with bool.
Qed.
Lemma andb_true_l : forall b:bool, true && b = b.
Proof.
trivial with bool.
Qed.
Notation andb_b_true := andb_true_r (only parsing).
Notation andb_true_b := andb_true_l (only parsing).
Lemma andb_false_elim :
forall b1 b2:bool, b1 && b2 = false -> {b1 = false} + {b2 = false}.
Proof.
destruct b1; simpl in |- *; auto with bool.
Defined.
Hint Resolve andb_false_elim: bool v62.
Complementation
Lemma andb_negb_r : forall b:bool, b && negb b = false.
Proof.
destruct b; reflexivity.
Qed.
Hint Resolve andb_negb_r: bool v62.
Notation andb_neg_b := andb_negb_r (only parsing).
Commutativity
Lemma andb_comm : forall b1 b2:bool, b1 && b2 = b2 && b1.
Proof.
destruct b1; destruct b2; reflexivity.
Qed.
Associativity
Lemma andb_assoc : forall b1 b2 b3:bool, b1 && (b2 && b3) = b1 && b2 && b3.
Proof.
destruct b1; destruct b2; destruct b3; reflexivity.
Qed.
Hint Resolve andb_comm andb_assoc: bool v62.
Distributivity
Lemma andb_orb_distrib_r :
forall b1 b2 b3:bool, b1 && (b2 || b3) = b1 && b2 || b1 && b3.
Proof.
destruct b1; destruct b2; destruct b3; reflexivity.
Qed.
Lemma andb_orb_distrib_l :
forall b1 b2 b3:bool, (b1 || b2) && b3 = b1 && b3 || b2 && b3.
Proof.
destruct b1; destruct b2; destruct b3; reflexivity.
Qed.
Lemma orb_andb_distrib_r :
forall b1 b2 b3:bool, b1 || b2 && b3 = (b1 || b2) && (b1 || b3).
Proof.
destruct b1; destruct b2; destruct b3; reflexivity.
Qed.
Lemma orb_andb_distrib_l :
forall b1 b2 b3:bool, b1 && b2 || b3 = (b1 || b3) && (b2 || b3).
Proof.
destruct b1; destruct b2; destruct b3; reflexivity.
Qed.
Notation demorgan1 := andb_orb_distrib_r (only parsing).
Notation demorgan2 := andb_orb_distrib_l (only parsing).
Notation demorgan3 := orb_andb_distrib_r (only parsing).
Notation demorgan4 := orb_andb_distrib_l (only parsing).
Absorption
Lemma absoption_andb : forall b1 b2:bool, b1 && (b1 || b2) = b1.
Proof.
destruct b1; destruct b2; simpl in |- *; reflexivity.
Qed.
Lemma absoption_orb : forall b1 b2:bool, b1 || b1 && b2 = b1.
Proof.
destruct b1; destruct b2; simpl in |- *; reflexivity.
Qed.
false
is neutral for xorb
Lemma xorb_false_r : forall b:bool, xorb b false = b.
Proof.
destruct b; trivial.
Qed.
Lemma xorb_false_l : forall b:bool, xorb false b = b.
Proof.
destruct b; trivial.
Qed.
Notation xorb_false := xorb_false_r (only parsing).
Notation false_xorb := xorb_false_l (only parsing).
true
is "complementing" for xorb
Lemma xorb_true_r : forall b:bool, xorb b true = negb b.
Proof.
trivial.
Qed.
Lemma xorb_true_l : forall b:bool, xorb true b = negb b.
Proof.
destruct b; trivial.
Qed.
Notation xorb_true := xorb_true_r (only parsing).
Notation true_xorb := xorb_true_l (only parsing).
Nilpotency (alternatively: identity is a inverse for
xorb
)
Lemma xorb_nilpotent : forall b:bool, xorb b b = false.
Proof.
destruct b; trivial.
Qed.
Commutativity
Lemma xorb_comm : forall b b':bool, xorb b b' = xorb b' b.
Proof.
destruct b; destruct b'; trivial.
Qed.
Associativity
Lemma xorb_assoc_reverse :
forall b b' b'':bool, xorb (xorb b b') b'' = xorb b (xorb b' b'').
Proof.
destruct b; destruct b'; destruct b''; trivial.
Qed.
Notation xorb_assoc := xorb_assoc_reverse (only parsing).
Lemma xorb_eq : forall b b':bool, xorb b b' = false -> b = b'.
Proof.
destruct b; destruct b'; trivial.
unfold xorb in |- *. intros. rewrite H. reflexivity.
Qed.
Lemma xorb_move_l_r_1 :
forall b b' b'':bool, xorb b b' = b'' -> b' = xorb b b''.
Proof.
intros. rewrite <- (false_xorb b'). rewrite <- (xorb_nilpotent b). rewrite xorb_assoc.
rewrite H. reflexivity.
Qed.
Lemma xorb_move_l_r_2 :
forall b b' b'':bool, xorb b b' = b'' -> b = xorb b'' b'.
Proof.
intros. rewrite xorb_comm in H. rewrite (xorb_move_l_r_1 b' b b'' H). apply xorb_comm.
Qed.
Lemma xorb_move_r_l_1 :
forall b b' b'':bool, b = xorb b' b'' -> xorb b' b = b''.
Proof.
intros. rewrite H. rewrite <- xorb_assoc. rewrite xorb_nilpotent. apply false_xorb.
Qed.
Lemma xorb_move_r_l_2 :
forall b b' b'':bool, b = xorb b' b'' -> xorb b b'' = b'.
Proof.
intros. rewrite H. rewrite xorb_assoc. rewrite xorb_nilpotent. apply xorb_false.
Qed.
Lemmas about the
b = true
embedding of bool
to Prop
Lemma eq_true_iff_eq : forall b1 b2, (b1 = true <-> b2 = true) -> b1 = b2.
Proof.
intros b1 b2; case b1; case b2; intuition.
Qed.
Notation bool_1 := eq_true_iff_eq (only parsing).
Lemma eq_true_negb_classical : forall b:bool, negb b <> true -> b = true.
Proof.
destruct b; intuition.
Qed.
Notation bool_3 := eq_true_negb_classical (only parsing).
Lemma eq_true_not_negb : forall b:bool, b <> true -> negb b = true.
Proof.
destruct b; intuition.
Qed.
Notation bool_6 := eq_true_not_negb (only parsing).
Hint Resolve eq_true_not_negb : bool.
Lemma absurd_eq_bool : forall b b':bool, False -> b = b'.
Proof.
contradiction.
Qed.
Lemma absurd_eq_true : forall b, False -> b = true.
Proof.
contradiction.
Qed.
Hint Resolve absurd_eq_true.
Lemma trans_eq_bool : forall x y z:bool, x = y -> y = z -> x = z.
Proof.
apply trans_eq.
Qed.
Hint Resolve trans_eq_bool.
Is_true
and equality
Hint Unfold Is_true: bool.
Lemma Is_true_eq_true : forall x:bool, Is_true x -> x = true.
Proof.
destruct x; simpl in |- *; tauto.
Qed.
Lemma Is_true_eq_left : forall x:bool, x = true -> Is_true x.
Proof.
intros; rewrite H; auto with bool.
Qed.
Lemma Is_true_eq_right : forall x:bool, true = x -> Is_true x.
Proof.
intros; rewrite <- H; auto with bool.
Qed.
Notation Is_true_eq_true2 := Is_true_eq_right (only parsing).
Hint Immediate Is_true_eq_right Is_true_eq_left: bool.
Lemma eqb_refl : forall x:bool, Is_true (eqb x x).
Proof.
destruct x; simpl; auto with bool.
Qed.
Lemma eqb_eq : forall x y:bool, Is_true (eqb x y) -> x = y.
Proof.
destruct x; destruct y; simpl; tauto.
Qed.
Is_true
and connectives
Lemma orb_prop_elim :
forall a b:bool, Is_true (a || b) -> Is_true a \/ Is_true b.
Proof.
destruct a; destruct b; simpl; tauto.
Qed.
Notation orb_prop2 := orb_prop_elim (only parsing).
Lemma orb_prop_intro :
forall a b:bool, Is_true a \/ Is_true b -> Is_true (a || b).
Proof.
destruct a; destruct b; simpl; tauto.
Qed.
Lemma andb_prop_intro :
forall b1 b2:bool, Is_true b1 /\ Is_true b2 -> Is_true (b1 && b2).
Proof.
destruct b1; destruct b2; simpl in |- *; tauto.
Qed.
Hint Resolve andb_prop_intro: bool v62.
Notation andb_true_intro2 :=
(fun b1 b2 H1 H2 => andb_prop_intro b1 b2 (conj H1 H2))
(only parsing).
Lemma andb_prop_elim :
forall a b:bool, Is_true (a && b) -> Is_true a /\ Is_true b.
Proof.
destruct a; destruct b; simpl in |- *; try (intro H; discriminate H);
auto with bool.
Qed.
Hint Resolve andb_prop_elim: bool v62.
Notation andb_prop2 := andb_prop_elim (only parsing).
Lemma eq_bool_prop_intro :
forall b1 b2, (Is_true b1 <-> Is_true b2) -> b1 = b2.
Proof.
destruct b1; destruct b2; simpl in *; intuition.
Qed.
Lemma eq_bool_prop_elim : forall b1 b2, b1 = b2 -> (Is_true b1 <-> Is_true b2).
Proof.
intros b1 b2; case b1; case b2; intuition.
Qed.
Lemma negb_prop_elim : forall b, Is_true (negb b) -> ~ Is_true b.
Proof.
destruct b; intuition.
Qed.
Lemma negb_prop_intro : forall b, ~ Is_true b -> Is_true (negb b).
Proof.
destruct b; simpl in *; intuition.
Qed.
Lemma negb_prop_classical : forall b, ~ Is_true (negb b) -> Is_true b.
Proof.
destruct b; intuition.
Qed.
Lemma negb_prop_involutive : forall b, Is_true b -> ~ Is_true (negb b).
Proof.
destruct b; intuition.
Qed.