Library Coq.FSets.FMapAVL


This module implements map using AVL trees. It follows the implementation from Ocaml's standard library.

Require Import FSetInterface.
Require Import FMapInterface.
Require Import FMapList.

Require Import ZArith.
Require Import Int.

Set Firstorder Depth 3.
Set Implicit Arguments.
Unset Strict Implicit.

Module Raw (I:Int)(X: OrderedType).
Import I.
Module II:=MoreInt(I).
Import II.
Open Local Scope Int_scope.

Module E := X.
Module MX := OrderedTypeFacts X.
Module PX := KeyOrderedType X.
Module L := FMapList.Raw X.
Import MX.
Import PX.

Definition key := X.t.

Trees


Section Elt.

Variable elt : Set.

Notation eqk := (eqk (elt:= elt)).
Notation eqke := (eqke (elt:= elt)).
Notation ltk := (ltk (elt:= elt)).

Inductive tree : Set :=
  | Leaf : tree
  | Node : tree -> key -> elt -> tree -> int -> tree.

Notation t := tree.

The Sixth field of Node is the height of the tree

Occurrence in a tree


Inductive MapsTo (x : key)(e : elt) : tree -> Prop :=
  | MapsRoot : forall l r h y,
      X.eq x y -> MapsTo x e (Node l y e r h)
  | MapsLeft : forall l r h y e',
      MapsTo x e l -> MapsTo x e (Node l y e' r h)
  | MapsRight : forall l r h y e',
      MapsTo x e r -> MapsTo x e (Node l y e' r h).

Inductive In (x : key) : tree -> Prop :=
  | InRoot : forall l r h y e,
      X.eq x y -> In x (Node l y e r h)
  | InLeft : forall l r h y e',
      In x l -> In x (Node l y e' r h)
  | InRight : forall l r h y e',
      In x r -> In x (Node l y e' r h).

Definition In0 (k:key)(m:t) : Prop := exists e:elt, MapsTo k e m.

Binary search trees


lt_tree x s: all elements in s are smaller than x (resp. greater for gt_tree)

Definition lt_tree x s := forall y:key, In y s -> X.lt y x.
Definition gt_tree x s := forall y:key, In y s -> X.lt x y.

bst t : t is a binary search tree

Inductive bst : tree -> Prop :=
  | BSLeaf : bst Leaf
  | BSNode : forall x e l r h,
      bst l -> bst r -> lt_tree x l -> gt_tree x r -> bst (Node l x e r h).

AVL trees


avl s : s is a properly balanced AVL tree, i.e. for any node the heights of the two children differ by at most 2

Definition height (s : tree) : int :=
  match s with
  | Leaf => 0
  | Node _ _ _ _ h => h
  end.

Inductive avl : tree -> Prop :=
  | RBLeaf : avl Leaf
  | RBNode : forall x e l r h,
      avl l ->
      avl r ->
      -(2) <= height l - height r <= 2 ->
      h = max (height l) (height r) + 1 ->
      avl (Node l x e r h).

End Elt.

Some helpful hints and tactics.

Notation t := tree.
Hint Constructors tree.
Hint Constructors MapsTo.
Hint Constructors In.
Hint Constructors bst.
Hint Constructors avl.
Hint Unfold lt_tree gt_tree.

Ltac inv f :=
  match goal with
     | H:f (Leaf _) |- _ => inversion_clear H; inv f
     | H:f _ (Leaf _) |- _ => inversion_clear H; inv f
     | H:f _ _ (Leaf _) |- _ => inversion_clear H; inv f
     | H:f _ _ _ (Leaf _) |- _ => inversion_clear H; inv f
     | H:f (Node _ _ _ _ _) |- _ => inversion_clear H; inv f
     | H:f _ (Node _ _ _ _ _) |- _ => inversion_clear H; inv f
     | H:f _ _ (Node _ _ _ _ _) |- _ => inversion_clear H; inv f
     | H:f _ _ _ (Node _ _ _ _ _) |- _ => inversion_clear H; inv f
     | _ => idtac
  end.

Ltac safe_inv f := match goal with
  | H:f (Node _ _ _ _ _) |- _ =>
        generalize H; inversion_clear H; safe_inv f
  | H:f _ (Node _ _ _ _ _) |- _ =>
        generalize H; inversion_clear H; safe_inv f
  | _ => intros
 end.

Ltac inv_all f :=
  match goal with
   | H: f _ |- _ => inversion_clear H; inv f
   | H: f _ _ |- _ => inversion_clear H; inv f
   | H: f _ _ _ |- _ => inversion_clear H; inv f
   | H: f _ _ _ _ |- _ => inversion_clear H; inv f
   | _ => idtac
  end.

Ltac order := match goal with
 | H: lt_tree ?x ?s, H1: In ?y ?s |- _ => generalize (H _ H1); clear H; order
 | H: gt_tree ?x ?s, H1: In ?y ?s |- _ => generalize (H _ H1); clear H; order
 | _ => MX.order
end.

Ltac intuition_in := repeat progress (intuition; inv In; inv MapsTo).
Ltac firstorder_in := repeat progress (firstorder; inv In; inv MapsTo).

Lemma height_non_negative : forall elt (s : t elt), avl s -> height s >= 0.
Proof.
 induction s; simpl; intros; auto with zarith.
 inv avl; intuition; omega_max.
Qed.

Ltac avl_nn_hyp H :=
     let nz := fresh "nz" in assert (nz := height_non_negative H).

Ltac avl_nn h :=
  let t := type of h in
  match type of t with
   | Prop => avl_nn_hyp h
   | _ => match goal with H : avl h |- _ => avl_nn_hyp H end
  end.

Ltac avl_nns :=
  match goal with
     | H:avl _ |- _ => avl_nn_hyp H; clear H; avl_nns
     | _ => idtac
  end.

Facts about MapsTo and In.

Lemma MapsTo_In : forall elt k e (m:t elt), MapsTo k e m -> In k m.
Proof.
 induction 1; auto.
Qed.
Hint Resolve MapsTo_In.

Lemma In_MapsTo : forall elt k (m:t elt), In k m -> exists e, MapsTo k e m.
Proof.
 induction 1; try destruct IHIn as (e,He); exists e; auto.
Qed.

Lemma In_alt : forall elt k (m:t elt), In0 k m <-> In k m.
Proof.
 split.
 intros (e,H); eauto.
 unfold In0; apply In_MapsTo; auto.
Qed.

Lemma MapsTo_1 :
 forall elt (m:t elt) x y e, X.eq x y -> MapsTo x e m -> MapsTo y e m.
Proof.
 induction m; simpl; intuition_in; eauto.
Qed.
Hint Immediate MapsTo_1.

Lemma In_1 :
 forall elt (m:t elt) x y, X.eq x y -> In x m -> In y m.
Proof.
 intros elt m x y; induction m; simpl; intuition_in; eauto.
Qed.

Results about lt_tree and gt_tree

Lemma lt_leaf : forall elt x, lt_tree x (Leaf elt).
Proof.
 unfold lt_tree in |- *; intros; intuition_in.
Qed.

Lemma gt_leaf : forall elt x, gt_tree x (Leaf elt).
Proof.
  unfold gt_tree in |- *; intros; intuition_in.
Qed.

Lemma lt_tree_node : forall elt x y (l:t elt) r e h,
 lt_tree x l -> lt_tree x r -> X.lt y x -> lt_tree x (Node l y e r h).
Proof.
 unfold lt_tree in *; firstorder_in; order.
Qed.

Lemma gt_tree_node : forall elt x y (l:t elt) r e h,
 gt_tree x l -> gt_tree x r -> X.lt x y -> gt_tree x (Node l y e r h).
Proof.
 unfold gt_tree in *; firstorder_in; order.
Qed.

Hint Resolve lt_leaf gt_leaf lt_tree_node gt_tree_node.

Lemma lt_left : forall elt x y (l: t elt) r e h,
 lt_tree x (Node l y e r h) -> lt_tree x l.
Proof.
 intuition_in.
Qed.

Lemma lt_right : forall elt x y (l:t elt) r e h,
 lt_tree x (Node l y e r h) -> lt_tree x r.
Proof.
 intuition_in.
Qed.

Lemma gt_left : forall elt x y (l:t elt) r e h,
 gt_tree x (Node l y e r h) -> gt_tree x l.
Proof.
 intuition_in.
Qed.

Lemma gt_right : forall elt x y (l:t elt) r e h,
 gt_tree x (Node l y e r h) -> gt_tree x r.
Proof.
 intuition_in.
Qed.

Hint Resolve lt_left lt_right gt_left gt_right.

Lemma lt_tree_not_in :
 forall elt x (t : t elt), lt_tree x t -> ~ In x t.
Proof.
 intros; intro; generalize (H _ H0); order.
Qed.

Lemma lt_tree_trans :
 forall elt x y, X.lt x y -> forall (t:t elt), lt_tree x t -> lt_tree y t.
Proof.
 firstorder eauto.
Qed.

Lemma gt_tree_not_in :
 forall elt x (t : t elt), gt_tree x t -> ~ In x t.
Proof.
 intros; intro; generalize (H _ H0); order.
Qed.

Lemma gt_tree_trans :
 forall elt x y, X.lt y x -> forall (t:t elt), gt_tree x t -> gt_tree y t.
Proof.
 firstorder eauto.
Qed.

Hint Resolve lt_tree_not_in lt_tree_trans gt_tree_not_in gt_tree_trans.

Results about avl

Lemma avl_node : forall elt x e (l:t elt) r,
 avl l ->
 avl r ->
 -(2) <= height l - height r <= 2 ->
 avl (Node l x e r (max (height l) (height r) + 1)).
Proof.
  intros; auto.
Qed.
Hint Resolve avl_node.

Helper functions


create l x r creates a node, assuming l and r to be balanced and |height l - height r| <= 2.

Definition create elt (l:t elt) x e r :=
   Node l x e r (max (height l) (height r) + 1).

Lemma create_bst :
 forall elt (l:t elt) x e r, bst l -> bst r -> lt_tree x l -> gt_tree x r ->
 bst (create l x e r).
Proof.
 unfold create; auto.
Qed.
Hint Resolve create_bst.

Lemma create_avl :
 forall elt (l:t elt) x e r, avl l -> avl r -> -(2) <= height l - height r <= 2 ->
 avl (create l x e r).
Proof.
 unfold create; auto.
Qed.

Lemma create_height :
 forall elt (l:t elt) x e r, avl l -> avl r -> -(2) <= height l - height r <= 2 ->
 height (create l x e r) = max (height l) (height r) + 1.
Proof.
 unfold create; intros; auto.
Qed.

Lemma create_in :
 forall elt (l:t elt) x e r y, In y (create l x e r) <-> X.eq y x \/ In y l \/ In y r.
Proof.
 unfold create; split; [ inversion_clear 1 | ]; intuition.
Qed.

trick for emulating assert false in Coq

Notation assert_false := Leaf.

bal l x e r acts as create, but performs one step of rebalancing if necessary, i.e. assumes |height l - height r| <= 3.

Definition bal elt (l: tree elt) x e r :=
  let hl := height l in
  let hr := height r in
  if gt_le_dec hl (hr+2) then
    match l with
     | Leaf => assert_false _
     | Node ll lx le lr _ =>
       if ge_lt_dec (height ll) (height lr) then
         create ll lx le (create lr x e r)
       else
         match lr with
          | Leaf => assert_false _
          | Node lrl lrx lre lrr _ =>
              create (create ll lx le lrl) lrx lre (create lrr x e r)
         end
    end
  else
    if gt_le_dec hr (hl+2) then
      match r with
       | Leaf => assert_false _
       | Node rl rx re rr _ =>
         if ge_lt_dec (height rr) (height rl) then
            create (create l x e rl) rx re rr
         else
           match rl with
            | Leaf => assert_false _
            | Node rll rlx rle rlr _ =>
                create (create l x e rll) rlx rle (create rlr rx re rr)
           end
      end
    else
      create l x e r.

Ltac bal_tac :=
 intros elt l x e r;
 unfold bal;
 destruct (gt_le_dec (height l) (height r + 2));
   [ destruct l as [ |ll lx le lr lh];
     [ | destruct (ge_lt_dec (height ll) (height lr));
          [ | destruct lr ] ]
   | destruct (gt_le_dec (height r) (height l + 2));
     [ destruct r as [ |rl rx re rr rh];
          [ | destruct (ge_lt_dec (height rr) (height rl));
               [ | destruct rl ] ]
     | ] ]; intros.

Ltac bal_tac_imp := match goal with
  | |- context [ assert_false ] =>
      inv avl; avl_nns; simpl in *; false_omega
  | _ => idtac
end.

Lemma bal_bst : forall elt (l:t elt) x e r, bst l -> bst r ->
 lt_tree x l -> gt_tree x r -> bst (bal l x e r).
Proof.
 bal_tac;
 inv bst; repeat apply create_bst; auto; unfold create;
 apply lt_tree_node || apply gt_tree_node; auto;
 eapply lt_tree_trans || eapply gt_tree_trans || eauto; eauto.
Qed.

Lemma bal_avl : forall elt (l:t elt) x e r, avl l -> avl r ->
 -(3) <= height l - height r <= 3 -> avl (bal l x e r).
Proof.
 bal_tac; inv avl; repeat apply create_avl; simpl in *; auto; omega_max.
Qed.

Lemma bal_height_1 : forall elt (l:t elt) x e r, avl l -> avl r ->
 -(3) <= height l - height r <= 3 ->
 0 <= height (bal l x e r) - max (height l) (height r) <= 1.
Proof.
 bal_tac; inv avl; avl_nns; simpl in *; omega_max.
Qed.

Lemma bal_height_2 :
 forall elt (l:t elt) x e r, avl l -> avl r -> -(2) <= height l - height r <= 2 ->
 height (bal l x e r) == max (height l) (height r) +1.
Proof.
 bal_tac; inv avl; simpl in *; omega_max.
Qed.

Lemma bal_in : forall elt (l:t elt) x e r y, avl l -> avl r ->
 (In y (bal l x e r) <-> X.eq y x \/ In y l \/ In y r).
Proof.
 bal_tac; bal_tac_imp; repeat rewrite create_in; intuition_in.
Qed.

Lemma bal_mapsto : forall elt (l:t elt) x e r y e', avl l -> avl r ->
 (MapsTo y e' (bal l x e r) <-> MapsTo y e' (create l x e r)).
Proof.
 bal_tac; bal_tac_imp; unfold create; intuition_in.
Qed.

Ltac omega_bal := match goal with
  | H:avl ?l, H':avl ?r |- context [ bal ?l ?x ?e ?r ] =>
     generalize (bal_height_1 x e H H') (bal_height_2 x e H H');
     omega_max
  end.

Insertion


Function add (elt:Set)(x:key)(e:elt)(s:t elt) { struct s } : t elt := match s with
   | Leaf => Node (Leaf _) x e (Leaf _) 1
   | Node l y e' r h =>
      match X.compare x y with
         | LT _ => bal (add x e l) y e' r
         | EQ _ => Node l y e r h
         | GT _ => bal l y e' (add x e r)
      end
  end.

Lemma add_avl_1 : forall elt (m:t elt) x e, avl m ->
 avl (add x e m) /\ 0 <= height (add x e m) - height m <= 1.
Proof.
 intros elt m x e; functional induction (add x e m); intros; inv avl; simpl in *.
 intuition; try constructor; simpl; auto; try omega_max.
 destruct IHt; auto.
 split.
 apply bal_avl; auto; omega_max.
 omega_bal.
 intuition; omega_max.
 destruct IHt; auto.
 split.
 apply bal_avl; auto; omega_max.
 omega_bal.
Qed.

Lemma add_avl : forall elt (m:t elt) x e, avl m -> avl (add x e m).
Proof.
 intros; generalize (add_avl_1 x e H); intuition.
Qed.
Hint Resolve add_avl.

Lemma add_in : forall elt (m:t elt) x y e, avl m ->
 (In y (add x e m) <-> X.eq y x \/ In y m).
Proof.
 intros elt m x y e; functional induction (add x e m); auto; intros.
 intuition_in.
 inv avl.
 rewrite bal_in; auto.
 rewrite (IHt H0); intuition_in.
 inv avl.
 firstorder_in.
 eapply In_1; eauto.
 inv avl.
 rewrite bal_in; auto.
 rewrite (IHt H1); intuition_in.
Qed.

Lemma add_bst : forall elt (m:t elt) x e, bst m -> avl m -> bst (add x e m).
Proof.
 intros elt m x e; functional induction (add x e m);
   intros; inv bst; inv avl; auto; apply bal_bst; auto.
 red; red in H4.
 intros.
 rewrite (add_in x y0 e H) in H0.
 intuition.
 eauto.
 red; red in H4.
 intros.
 rewrite (add_in x y0 e H5) in H0.
 intuition.
 apply lt_eq with x; auto.
Qed.

Lemma add_1 : forall elt (m:t elt) x y e, avl m -> X.eq x y -> MapsTo y e (add x e m).
Proof.
 intros elt m x y e; functional induction (add x e m);
   intros; inv bst; inv avl; try rewrite bal_mapsto; unfold create; eauto.
Qed.

Lemma add_2 : forall elt (m:t elt) x y e e', avl m -> ~X.eq x y ->
 MapsTo y e m -> MapsTo y e (add x e' m).
Proof.
 intros elt m x y e e'; induction m; simpl; auto.
 destruct (X.compare x k);
 intros; inv bst; inv avl; try rewrite bal_mapsto; unfold create; auto;
   inv MapsTo; auto; order.
Qed.

Lemma add_3 : forall elt (m:t elt) x y e e', avl m -> ~X.eq x y ->
 MapsTo y e (add x e' m) -> MapsTo y e m.
Proof.
 intros elt m x y e e'; induction m; simpl; auto.
 intros; inv avl; inv MapsTo; auto; order.
 destruct (X.compare x k); intro; inv avl;
  try rewrite bal_mapsto; auto; unfold create; intros; inv MapsTo; auto;
  order.
Qed.

Extraction of minimum binding



morally, remove_min is to be applied to a non-empty tree t = Node l x e r h. Since we can't deal here with assert false for t=Leaf, we pre-unpack t (and forget about h).

Function remove_min (elt:Set)(l:t elt)(x:key)(e:elt)(r:t elt) { struct l } : t elt*(key*elt) :=
  match l with
    | Leaf => (r,(x,e))
    | Node ll lx le lr lh => let (l',m) := (remove_min ll lx le lr : t elt*(key*elt)) in (bal l' x e r, m)
  end.

Lemma remove_min_avl_1 : forall elt (l:t elt) x e r h, avl (Node l x e r h) ->
 avl (fst (remove_min l x e r)) /\
 0 <= height (Node l x e r h) - height (fst (remove_min l x e r)) <= 1.
Proof.
 intros elt l x e r; functional induction (remove_min l x e r); simpl in *; intros.
 inv avl; simpl in *; split; auto.
 avl_nns; omega_max.
 inversion_clear H.
 destruct (IHp lh); auto.
 split; simpl in *.
 rewrite_all e1. simpl in *.
 apply bal_avl; subst;auto; omega_max.
 rewrite_all e1;simpl in *;omega_bal.
Qed.

Lemma remove_min_avl : forall elt (l:t elt) x e r h, avl (Node l x e r h) ->
    avl (fst (remove_min l x e r)).
Proof.
 intros; generalize (remove_min_avl_1 H); intuition.
Qed.

Lemma remove_min_in : forall elt (l:t elt) x e r h y, avl (Node l x e r h) ->
 (In y (Node l x e r h) <->
  X.eq y (fst (snd (remove_min l x e r))) \/ In y (fst (remove_min l x e r))).
Proof.
 intros elt l x e r; functional induction (remove_min l x e r); simpl in *; intros.
 intuition_in.
 inversion_clear H.
 generalize (remove_min_avl H0).

 rewrite_all e1; simpl; intros.
 rewrite bal_in; auto.
 generalize (IHp lh y H0).
 intuition.
 inversion_clear H7; intuition.
Qed.

Lemma remove_min_mapsto : forall elt (l:t elt) x e r h y e', avl (Node l x e r h) ->
 (MapsTo y e' (Node l x e r h) <->
   ((X.eq y (fst (snd (remove_min l x e r))) /\ e' = (snd (snd (remove_min l x e r))))
    \/ MapsTo y e' (fst (remove_min l x e r)))).
Proof.
 intros elt l x e r; functional induction (remove_min l x e r); simpl in *; intros.
 intuition_in; subst; auto.
 inversion_clear H.
 generalize (remove_min_avl H0).
 rewrite_all e1; simpl; intros.
 rewrite bal_mapsto; auto; unfold create.
 simpl in *;destruct (IHp lh y e').
 auto.
 intuition.
 inversion_clear H2; intuition.
 inversion_clear H9; intuition.
Qed.

Lemma remove_min_bst : forall elt (l:t elt) x e r h,
 bst (Node l x e r h) -> avl (Node l x e r h) -> bst (fst (remove_min l x e r)).
Proof.
 intros elt l x e r; functional induction (remove_min l x e r); simpl in *; intros.
 inv bst; auto.
 inversion_clear H; inversion_clear H0.
 apply bal_bst; auto.
 rewrite_all e1;simpl in *;firstorder.
 intro; intros.
 generalize (remove_min_in y H).
 rewrite_all e1; simpl in *.
 destruct 1.
 apply H3; intuition.
Qed.

Lemma remove_min_gt_tree : forall elt (l:t elt) x e r h,
 bst (Node l x e r h) -> avl (Node l x e r h) ->
 gt_tree (fst (snd (remove_min l x e r))) (fst (remove_min l x e r)).
Proof.
 intros elt l x e r; functional induction (remove_min l x e r); simpl in *; intros.
 inv bst; auto.
 inversion_clear H; inversion_clear H0.
 intro; intro.
 rewrite_all e1;simpl in *.
 generalize (IHp lh H1 H); clear H7 H6 IHp.
 generalize (remove_min_avl H).
 generalize (remove_min_in (fst m) H).
 rewrite e1; simpl; intros.
 rewrite (bal_in x e y H7 H5) in H0.
 destruct H6.
 firstorder.
 apply lt_eq with x; auto.
 apply X.lt_trans with x; auto.
Qed.

Merging two trees



merge t1 t2 builds the union of t1 and t2 assuming all elements of t1 to be smaller than all elements of t2, and |height t1 - height t2| <= 2.

Function merge (elt:Set) (s1 s2 : t elt) : tree elt := match s1,s2 with
  | Leaf, _ => s2
  | _, Leaf => s1
  | _, Node l2 x2 e2 r2 h2 =>
    match remove_min l2 x2 e2 r2 with
      (s2',(x,e)) => bal s1 x e s2'
    end
end.

Lemma merge_avl_1 : forall elt (s1 s2:t elt), avl s1 -> avl s2 ->
 -(2) <= height s1 - height s2 <= 2 ->
 avl (merge s1 s2) /\
 0<= height (merge s1 s2) - max (height s1) (height s2) <=1.
Proof.
 intros elt s1 s2; functional induction (merge s1 s2); simpl in *; intros.
 split; auto; avl_nns; omega_max.
 destruct s1;try contradiction;clear y.
 split; auto; avl_nns; simpl in *; omega_max.
 destruct s1;try contradiction;clear y.
 generalize (remove_min_avl_1 H0).
 rewrite e3; simpl;destruct 1.
 split.
 apply bal_avl; auto.
 simpl; omega_max.
 omega_bal.
Qed.

Lemma merge_avl : forall elt (s1 s2:t elt), avl s1 -> avl s2 ->
  -(2) <= height s1 - height s2 <= 2 -> avl (merge s1 s2).
Proof.
 intros; generalize (merge_avl_1 H H0 H1); intuition.
Qed.

Lemma merge_in : forall elt (s1 s2:t elt) y, bst s1 -> avl s1 -> bst s2 -> avl s2 ->
 (In y (merge s1 s2) <-> In y s1 \/ In y s2).
Proof.
 intros elt s1 s2; functional induction (merge s1 s2);intros.
 intuition_in.
 intuition_in.
 destruct s1;try contradiction;clear y.
 replace s2' with (fst (remove_min l2 x2 e2 r2)); [|rewrite e3; auto].
 rewrite bal_in; auto.
 generalize (remove_min_avl H2); rewrite e3; simpl; auto.
 generalize (remove_min_in y0 H2); rewrite e3; simpl; intro.
 rewrite H3; intuition.
Qed.

Lemma merge_mapsto : forall elt (s1 s2:t elt) y e, bst s1 -> avl s1 -> bst s2 -> avl s2 ->
  (MapsTo y e (merge s1 s2) <-> MapsTo y e s1 \/ MapsTo y e s2).
Proof.
 intros elt s1 s2; functional induction (@merge elt s1 s2); intros.
 intuition_in.
 intuition_in.
 destruct s1;try contradiction;clear y.
 replace s2' with (fst (remove_min l2 x2 e2 r2)); [|rewrite e3; auto].
 rewrite bal_mapsto; auto; unfold create.
 generalize (remove_min_avl H2); rewrite e3; simpl; auto.
 generalize (remove_min_mapsto y0 e H2); rewrite e3; simpl; intro.
 rewrite H3; intuition (try subst; auto).
 inversion_clear H3; intuition.
Qed.

Lemma merge_bst : forall elt (s1 s2:t elt), bst s1 -> avl s1 -> bst s2 -> avl s2 ->
 (forall y1 y2 : key, In y1 s1 -> In y2 s2 -> X.lt y1 y2) ->
 bst (merge s1 s2).
Proof.
 intros elt s1 s2; functional induction (@merge elt s1 s2); intros; auto.

 apply bal_bst; auto.
 destruct s1;try contradiction.
 generalize (remove_min_bst H1); rewrite e3; simpl in *; auto.
 destruct s1;try contradiction.
 intro; intro.
 apply H3; auto.
 generalize (remove_min_in x H2); rewrite e3; simpl; intuition.
 destruct s1;try contradiction.
 generalize (remove_min_gt_tree H1); rewrite e3; simpl; auto.
Qed.

Deletion


Function remove (elt:Set)(x:key)(s:t elt) { struct s } : t elt := match s with
  | Leaf => Leaf _
  | Node l y e r h =>
      match X.compare x y with
         | LT _ => bal (remove x l) y e r
         | EQ _ => merge l r
         | GT _ => bal l y e (remove x r)
      end
   end.

Lemma remove_avl_1 : forall elt (s:t elt) x, avl s ->
 avl (remove x s) /\ 0 <= height s - height (remove x s) <= 1.
Proof.
 intros elt s x; functional induction (@remove elt x s); intros.
 split; auto; omega_max.
 inv avl.
 destruct (IHt H0).
 split.
 apply bal_avl; auto.
 omega_max.
 omega_bal.
 inv avl.
 generalize (merge_avl_1 H0 H1 H2).
 intuition omega_max.
 inv avl.
 destruct (IHt H1).
 split.
 apply bal_avl; auto.
 omega_max.
 omega_bal.
Qed.

Lemma remove_avl : forall elt (s:t elt) x, avl s -> avl (remove x s).
Proof.
 intros; generalize (remove_avl_1 x H); intuition.
Qed.
Hint Resolve remove_avl.

Lemma remove_in : forall elt (s:t elt) x y, bst s -> avl s ->
 (In y (remove x s) <-> ~ X.eq y x /\ In y s).
Proof.
 intros elt s x; functional induction (@remove elt x s); simpl; intros.
 intuition_in.
 inv avl; inv bst; clear e1.
 rewrite bal_in; auto.
 generalize (IHt y0 H0); intuition; [ order | order | intuition_in ].
 inv avl; inv bst; clear e1.
 rewrite merge_in; intuition; [ order | order | intuition_in ].
 elim H9; eauto.
 inv avl; inv bst; clear e1.
 rewrite bal_in; auto.
 generalize (IHt y0 H5); intuition; [ order | order | intuition_in ].
Qed.

Lemma remove_bst : forall elt (s:t elt) x, bst s -> avl s -> bst (remove x s).
Proof.
 intros elt s x; functional induction (@remove elt x s); simpl; intros.
 auto.
 inv avl; inv bst.
 apply bal_bst; auto.
 intro; intro.
 rewrite (remove_in x y0 H0) in H; auto.
 destruct H; eauto.
 inv avl; inv bst.
 apply merge_bst; eauto.
 inv avl; inv bst.
 apply bal_bst; auto.
 intro; intro.
 rewrite (remove_in x y0 H5) in H; auto.
 destruct H; eauto.
Qed.

Lemma remove_1 : forall elt (m:t elt) x y, bst m -> avl m -> X.eq x y -> ~ In y (remove x m).
Proof.
 intros; rewrite remove_in; intuition.
Qed.

Lemma remove_2 : forall elt (m:t elt) x y e, bst m -> avl m -> ~X.eq x y ->
 MapsTo y e m -> MapsTo y e (remove x m).
Proof.
 intros elt m x y e; induction m; simpl; auto.
 destruct (X.compare x k);
   intros; inv bst; inv avl; try rewrite bal_mapsto; unfold create; auto;
   try solve [inv MapsTo; auto].
 rewrite merge_mapsto; auto.
 inv MapsTo; auto; order.
Qed.

Lemma remove_3 : forall elt (m:t elt) x y e, bst m -> avl m ->
 MapsTo y e (remove x m) -> MapsTo y e m.
Proof.
 intros elt m x y e; induction m; simpl; auto.
 destruct (X.compare x k); intros Bs Av; inv avl; inv bst;
  try rewrite bal_mapsto; auto; unfold create.
  intros; inv MapsTo; auto.
  rewrite merge_mapsto; intuition.
  intros; inv MapsTo; auto.
Qed.

Section Elt2.

Variable elt:Set.

Notation eqk := (eqk (elt:= elt)).
Notation eqke := (eqke (elt:= elt)).
Notation ltk := (ltk (elt:= elt)).

Empty map


Definition Empty m := forall (a : key)(e:elt) , ~ MapsTo a e m.

Definition empty := (Leaf elt).

Lemma empty_bst : bst empty.
Proof.
 unfold empty; auto.
Qed.

Lemma empty_avl : avl empty.
Proof.
 unfold empty; auto.
Qed.

Lemma empty_1 : Empty empty.
Proof.
 unfold empty, Empty; intuition_in.
Qed.

Emptyness test


Definition is_empty (s:t elt) := match s with Leaf => true | _ => false end.

Lemma is_empty_1 : forall s, Empty s -> is_empty s = true.
Proof.
 destruct s as [|r x e l h]; simpl; auto.
 intro H; elim (H x e); auto.
Qed.

Lemma is_empty_2 : forall s, is_empty s = true -> Empty s.
Proof.
 destruct s; simpl; intros; try discriminate; red; intuition_in.
Qed.

Appartness


The mem function is deciding appartness. It exploits the bst property to achieve logarithmic complexity.

Function mem (x:key)(m:t elt) { struct m } : bool :=
   match m with
     | Leaf => false
     | Node l y e r _ => match X.compare x y with
             | LT _ => mem x l
             | EQ _ => true
             | GT _ => mem x r
         end
   end.
Implicit Arguments mem.

Lemma mem_1 : forall s x, bst s -> In x s -> mem x s = true.
Proof.
 intros s x.
 functional induction (mem x s); inversion_clear 1; auto.
 intuition_in.
 intuition_in; firstorder; absurd (X.lt x y); eauto.
 intuition_in; firstorder; absurd (X.lt y x); eauto.
Qed.

Lemma mem_2 : forall s x, mem x s = true -> In x s.
Proof.
 intros s x.
 functional induction (mem x s); firstorder; intros; try discriminate.
Qed.

Function find (x:key)(m:t elt) { struct m } : option elt :=
   match m with
     | Leaf => None
     | Node l y e r _ => match X.compare x y with
             | LT _ => find x l
             | EQ _ => Some e
             | GT _ => find x r
         end
   end.

Lemma find_1 : forall m x e, bst m -> MapsTo x e m -> find x m = Some e.
Proof.
 intros m x e.
 functional induction (find x m); inversion_clear 1; auto.
 intuition_in.
 intuition_in; firstorder; absurd (X.lt x y); eauto.
 intuition_in; auto.
  absurd (X.lt x y); eauto.
  absurd (X.lt y x); eauto.
 intuition_in; firstorder; absurd (X.lt y x); eauto.
Qed.

Lemma find_2 : forall m x e, find x m = Some e -> MapsTo x e m.
Proof.
 intros m x.
 functional induction (find x m); subst;firstorder; intros; try discriminate.
 inversion H; subst; auto.
Qed.

An all-in-one spec for add used later in the naive map2

Lemma add_spec : forall m x y e , bst m -> avl m ->
  find x (add y e m) = if eq_dec x y then Some e else find x m.
Proof.
intros.
destruct (eq_dec x y).
apply find_1.
apply add_bst; auto.
eapply MapsTo_1 with y; eauto.
apply add_1; auto.
case_eq (find x m); intros.
apply find_1.
apply add_bst; auto.
apply add_2; auto.
apply find_2; auto.
case_eq (find x (add y e m)); auto; intros.
rewrite <- H1; symmetry.
apply find_1; auto.
eapply add_3; eauto.
apply find_2; eauto.
Qed.

Elements


elements_tree_aux acc t catenates the elements of t in infix order to the list acc

Fixpoint elements_aux (acc : list (key*elt)) (t : t elt) {struct t} : list (key*elt) :=
  match t with
   | Leaf => acc
   | Node l x e r _ => elements_aux ((x,e) :: elements_aux acc r) l
  end.

then elements is an instanciation with an empty acc

Definition elements := elements_aux nil.

Lemma elements_aux_mapsto : forall s acc x e,
 InA eqke (x,e) (elements_aux acc s) <-> MapsTo x e s \/ InA eqke (x,e) acc.
Proof.
 induction s as [ | l Hl x e r Hr h ]; simpl; auto.
 intuition.
 inversion H0.
 intros.
 rewrite Hl.
 destruct (Hr acc x0 e0); clear Hl Hr.
 intuition; inversion_clear H3; intuition.
 destruct H0; simpl in *; subst; intuition.
Qed.

Lemma elements_mapsto : forall s x e, InA eqke (x,e) (elements s) <-> MapsTo x e s.
Proof.
 intros; generalize (elements_aux_mapsto s nil x e); intuition.
 inversion_clear H0.
Qed.

Lemma elements_in : forall s x, L.PX.In x (elements s) <-> In x s.
Proof.
 intros.
 unfold L.PX.In.
 rewrite <- In_alt; unfold In0.
 firstorder.
 exists x0.
 rewrite <- elements_mapsto; auto.
 exists x0.
 unfold L.PX.MapsTo; rewrite elements_mapsto; auto.
Qed.

Lemma elements_aux_sort : forall s acc, bst s -> sort ltk acc ->
 (forall x e y, InA eqke (x,e) acc -> In y s -> X.lt y x) ->
 sort ltk (elements_aux acc s).
Proof.
 induction s as [ | l Hl y e r Hr h]; simpl; intuition.
 inv bst.
 apply Hl; auto.
 constructor.
 apply Hr; eauto.
 apply (InA_InfA (eqke_refl (elt:=elt))); intros (y',e') H6.
 destruct (elements_aux_mapsto r acc y' e'); intuition.
 red; simpl; eauto.
 red; simpl; eauto.
 intros.
 inversion_clear H.
 destruct H7; simpl in *.
 order.
 destruct (elements_aux_mapsto r acc x e0); intuition eauto.
Qed.

Lemma elements_sort : forall s : t elt, bst s -> sort ltk (elements s).
Proof.
 intros; unfold elements; apply elements_aux_sort; auto.
 intros; inversion H0.
Qed.
Hint Resolve elements_sort.

Fold


Fixpoint fold (A : Set) (f : key -> elt -> A -> A)(s : t elt) {struct s} : A -> A :=
 fun a => match s with
  | Leaf => a
  | Node l x e r _ => fold f r (f x e (fold f l a))
 end.

Definition fold' (A : Set) (f : key -> elt -> A -> A)(s : t elt) :=
  L.fold f (elements s).

Lemma fold_equiv_aux :
 forall (A : Set) (s : t elt) (f : key -> elt -> A -> A) (a : A) acc,
 L.fold f (elements_aux acc s) a = L.fold f acc (fold f s a).
Proof.
 simple induction s.
 simpl in |- *; intuition.
 simpl in |- *; intros.
 rewrite H.
 simpl.
 apply H0.
Qed.

Lemma fold_equiv :
 forall (A : Set) (s : t elt) (f : key -> elt -> A -> A) (a : A),
 fold f s a = fold' f s a.
Proof.
 unfold fold', elements in |- *.
 simple induction s; simpl in |- *; auto; intros.
 rewrite fold_equiv_aux.
 rewrite H0.
 simpl in |- *; auto.
Qed.

Lemma fold_1 :
 forall (s:t elt)(Hs:bst s)(A : Set)(i:A)(f : key -> elt -> A -> A),
 fold f s i = fold_left (fun a p => f (fst p) (snd p) a) (elements s) i.
Proof.
 intros.
 rewrite fold_equiv.
 unfold fold'.
 rewrite L.fold_1.
 unfold L.elements; auto.
Qed.

Comparison


Definition Equal (cmp:elt->elt->bool) m m' :=
  (forall k, In k m <-> In k m') /\
  (forall k e e', MapsTo k e m -> MapsTo k e' m' -> cmp e e' = true).

Enumeration of the elements of a tree


Inductive enumeration : Set :=
 | End : enumeration
 | More : key -> elt -> t elt -> enumeration -> enumeration.

flatten_e e returns the list of elements of e i.e. the list of elements actually compared

Fixpoint flatten_e (e : enumeration) : list (key*elt) := match e with
  | End => nil
  | More x e t r => (x,e) :: elements t ++ flatten_e r
 end.

sorted_e e expresses that elements in the enumeration e are sorted, and that all trees in e are binary search trees.

Inductive In_e (p:key*elt) : enumeration -> Prop :=
  | InEHd1 :
      forall (y : key)(d:elt) (s : t elt) (e : enumeration),
      eqke p (y,d) -> In_e p (More y d s e)
  | InEHd2 :
      forall (y : key) (d:elt) (s : t elt) (e : enumeration),
      MapsTo (fst p) (snd p) s -> In_e p (More y d s e)
  | InETl :
      forall (y : key) (d:elt) (s : t elt) (e : enumeration),
      In_e p e -> In_e p (More y d s e).

Hint Constructors In_e.

Inductive sorted_e : enumeration -> Prop :=
  | SortedEEnd : sorted_e End
  | SortedEMore :
      forall (x : key) (d:elt) (s : t elt) (e : enumeration),
      bst s ->
      (gt_tree x s) ->
      sorted_e e ->
      (forall p, In_e p e -> ltk (x,d) p) ->
      (forall p,
       MapsTo (fst p) (snd p) s -> forall q, In_e q e -> ltk p q) ->
      sorted_e (More x d s e).

Hint Constructors sorted_e.

Lemma in_flatten_e :
 forall p e, InA eqke p (flatten_e e) -> In_e p e.
Proof.
 simple induction e; simpl in |- *; intuition.
 inversion_clear H.
 inversion_clear H0; auto.
 elim (InA_app H1); auto.
 destruct (elements_mapsto t a b); auto.
Qed.

Lemma sorted_flatten_e :
 forall e : enumeration, sorted_e e -> sort ltk (flatten_e e).
Proof.
 simple induction e; simpl in |- *; intuition.
 apply cons_sort.
 apply (SortA_app (eqke_refl (elt:=elt))); inversion_clear H0; auto.
 intros; apply H5; auto.
 rewrite <- elements_mapsto; auto; destruct x; auto.
 apply in_flatten_e; auto.
 inversion_clear H0.
 apply In_InfA; intros.
 intros; elim (in_app_or _ _ _ H0); intuition.
 generalize (In_InA (eqke_refl (elt:=elt)) H6).
 destruct y; rewrite elements_mapsto; eauto.
 apply H4; apply in_flatten_e; auto.
 apply In_InA; auto.
Qed.

Lemma elements_app :
 forall s acc, elements_aux acc s = elements s ++ acc.
Proof.
 simple induction s; simpl in |- *; intuition.
 rewrite H0.
 rewrite H.
 unfold elements; simpl.
 do 2 rewrite H.
 rewrite H0.
 repeat rewrite <- app_nil_end.
 repeat rewrite app_ass; auto.
Qed.

Lemma compare_flatten_1 :
 forall t1 t2 x e z l,
 elements t1 ++ (x,e) :: elements t2 ++ l =
 elements (Node t1 x e t2 z) ++ l.
Proof.
 simpl in |- *; unfold elements in |- *; simpl in |- *; intuition.
 repeat rewrite elements_app.
 repeat rewrite <- app_nil_end.
 repeat rewrite app_ass; auto.
Qed.

key lemma for correctness

Lemma flatten_e_elements :
 forall l r x d z e,
 elements l ++ flatten_e (More x d r e) =
 elements (Node l x d r z) ++ flatten_e e.
Proof.
 intros; simpl.
 apply compare_flatten_1.
Qed.

Open Local Scope Z_scope.

termination of compare_aux

Fixpoint measure_e_t (s : t elt) : Z := match s with
  | Leaf => 0
  | Node l _ _ r _ => 1 + measure_e_t l + measure_e_t r
 end.

Fixpoint measure_e (e : enumeration) : Z := match e with
  | End => 0
  | More _ _ s r => 1 + measure_e_t s + measure_e r
 end.

Ltac Measure_e_t := unfold measure_e_t in |- *; fold measure_e_t in |- *.
Ltac Measure_e := unfold measure_e in |- *; fold measure_e in |- *.

Lemma measure_e_t_0 : forall s : t elt, measure_e_t s >= 0.
Proof.
 simple induction s.
 simpl in |- *; omega.
 intros.
 Measure_e_t; omega.
Qed.

Ltac Measure_e_t_0 s := generalize (@measure_e_t_0 s); intro.

Lemma measure_e_0 : forall e : enumeration, measure_e e >= 0.
Proof.
 simple induction e.
 simpl in |- *; omega.
 intros.
 Measure_e; Measure_e_t_0 t; omega.
Qed.

Ltac Measure_e_0 e := generalize (@measure_e_0 e); intro.

Induction principle over the sum of the measures for two lists

Definition compare_rec2 :
 forall P : enumeration -> enumeration -> Set,
  (forall x x' : enumeration,
   (forall y y' : enumeration,
    measure_e y + measure_e y' < measure_e x + measure_e x' -> P y y') ->
   P x x') ->
 forall x x' : enumeration, P x x'.
Proof.
 intros P H x x'.
 apply well_founded_induction_type_2
 with (R := fun yy' xx' : enumeration * enumeration =>
            measure_e (fst yy') + measure_e (snd yy') <
            measure_e (fst xx') + measure_e (snd xx')); auto.
 apply Wf_nat.well_founded_lt_compat
 with (f := fun xx' : enumeration * enumeration =>
            Zabs_nat (measure_e (fst xx') + measure_e (snd xx'))).
 intros; apply Zabs.Zabs_nat_lt.
 Measure_e_0 (fst x0); Measure_e_0 (snd x0); Measure_e_0 (fst y);
 Measure_e_0 (snd y); intros; omega.
Qed.

cons t e adds the elements of tree t on the head of enumeration e. Code:

let rec cons s e = match s with | Empty -> e | Node(l, k, d, r, _) -> cons l (More(k, d, r, e))

Definition cons : forall s e, bst s -> sorted_e e ->
  (forall x y, MapsTo (fst x) (snd x) s -> In_e y e -> ltk x y) ->
  { r : enumeration
  | sorted_e r /\
    measure_e r = measure_e_t s + measure_e e /\
    flatten_e r = elements s ++ flatten_e e
  }.
Proof.
 simple induction s; intuition.
 exists e; intuition.
 clear H0.
 case (H (More k e t0 e0)); clear H; intuition.
 inv bst; auto.
 constructor; inversion_clear H1; auto.
 inversion_clear H0; inv bst; intuition.
 destruct y; red; red in H4; simpl in *; intuition.
 apply lt_eq with k; eauto.
 destruct y; red; simpl in *; intuition.
 apply X.lt_trans with k; eauto.
 exists x; intuition.
 generalize H4; Measure_e; intros; Measure_e_t; omega.
 rewrite H5.
 apply flatten_e_elements.
Qed.

Definition equal_aux :
 forall (cmp: elt -> elt -> bool)(e1 e2:enumeration),
 sorted_e e1 -> sorted_e e2 ->
 { L.Equal cmp (flatten_e e1) (flatten_e e2) } +
 { ~ L.Equal cmp (flatten_e e1) (flatten_e e2) }.
Proof.
 intros cmp e1 e2; pattern e1, e2 in |- *; apply compare_rec2.
 simple destruct x; simple destruct x'; intuition.
 left; unfold L.Equal in |- *; intuition.
 inversion H2.
 right; simpl in |- *; auto.
 destruct 1.
 destruct (H2 k).
 destruct H5; auto.
 exists e; auto.
 inversion H5.
 right; simpl in |- *; auto.
 destruct 1.
 destruct (H2 k).
 destruct H4; auto.
 exists e; auto.
 inversion H4.
 case (X.compare k k0); intro.
 right.
 destruct 1.
 clear H3 H.
 assert (L.PX.In k (flatten_e (More k0 e3 t0 e4))).
  destruct (H2 k).
  apply H; simpl; exists e; auto.
 destruct H.
 generalize (Sort_In_cons_2 (sorted_flatten_e H1) (InA_eqke_eqk H)).
 compute.
 intuition order.
 case_eq (cmp e e3).
 intros EQ.
 destruct (@cons t e0) as [c1 (H2,(H3,H4))]; try inversion_clear H0; auto.
 destruct (@cons t0 e4) as [c2 (H5,(H6,H7))]; try inversion_clear H1; auto.
 destruct (H c1 c2); clear H; intuition.
 Measure_e; omega.
 left.
 rewrite H4 in e6; rewrite H7 in e6.
 simpl; rewrite <- L.equal_cons; auto.
 apply (sorted_flatten_e H0).
 apply (sorted_flatten_e H1).
 right.
 simpl; rewrite <- L.equal_cons; auto.
 apply (sorted_flatten_e H0).
 apply (sorted_flatten_e H1).
 swap f.
 rewrite H4; rewrite H7; auto.
 right.
 destruct 1.
 rewrite (H4 k) in H2; try discriminate; simpl; auto.
 right.
 destruct 1.
 clear H3 H.
 assert (L.PX.In k0 (flatten_e (More k e t e0))).
  destruct (H2 k0).
  apply H3; simpl; exists e3; auto.
 destruct H.
 generalize (Sort_In_cons_2 (sorted_flatten_e H0) (InA_eqke_eqk H)).
 compute.
 intuition order.
Qed.

Lemma Equal_elements : forall cmp s s',
 Equal cmp s s' <-> L.Equal cmp (elements s) (elements s').
Proof.
unfold Equal, L.Equal; split; split; intros.
do 2 rewrite elements_in; firstorder.
destruct H.
apply (H2 k); rewrite <- elements_mapsto; auto.
do 2 rewrite <- elements_in; firstorder.
destruct H.
apply (H2 k); unfold L.PX.MapsTo; rewrite elements_mapsto; auto.
Qed.

Definition equal : forall cmp s s', bst s -> bst s' ->
  {Equal cmp s s'} + {~ Equal cmp s s'}.
Proof.
 intros cmp s1 s2 s1_bst s2_bst; simpl.
 destruct (@cons s1 End); auto.
 inversion_clear 2.
 destruct (@cons s2 End); auto.
 inversion_clear 2.
 simpl in a; rewrite <- app_nil_end in a.
 simpl in a0; rewrite <- app_nil_end in a0.
 destruct (@equal_aux cmp x x0); intuition.
 left.
 rewrite H4 in e; rewrite H5 in e.
 rewrite Equal_elements; auto.
 right.
 swap n.
 rewrite H4; rewrite H5.
 rewrite <- Equal_elements; auto.
Qed.

End Elt2.

Section Elts.

Variable elt elt' elt'' : Set.

Section Map.
Variable f : elt -> elt'.

Fixpoint map (m:t elt) {struct m} : t elt' :=
  match m with
   | Leaf => Leaf _
   | Node l v d r h => Node (map l) v (f d) (map r) h
  end.

Lemma map_height : forall m, height (map m) = height m.
Proof.
destruct m; simpl; auto.
Qed.

Lemma map_avl : forall m, avl m -> avl (map m).
Proof.
induction m; simpl; auto.
inversion_clear 1; constructor; auto; do 2 rewrite map_height; auto.
Qed.

Lemma map_1 : forall (m: tree elt)(x:key)(e:elt),
    MapsTo x e m -> MapsTo x (f e) (map m).
Proof.
induction m; simpl; inversion_clear 1; auto.
Qed.

Lemma map_2 : forall (m: t elt)(x:key),
    In x (map m) -> In x m.
Proof.
induction m; simpl; inversion_clear 1; auto.
Qed.

Lemma map_bst : forall m, bst m -> bst (map m).
Proof.
induction m; simpl; auto.
inversion_clear 1; constructor; auto.
red; intros; apply H2; apply map_2; auto.
red; intros; apply H3; apply map_2; auto.
Qed.

End Map.
Section Mapi.
Variable f : key -> elt -> elt'.

Fixpoint mapi (m:t elt) {struct m} : t elt' :=
  match m with
   | Leaf => Leaf _
   | Node l v d r h => Node (mapi l) v (f v d) (mapi r) h
  end.

Lemma mapi_height : forall m, height (mapi m) = height m.
Proof.
destruct m; simpl; auto.
Qed.

Lemma mapi_avl : forall m, avl m -> avl (mapi m).
Proof.
induction m; simpl; auto.
inversion_clear 1; constructor; auto; do 2 rewrite mapi_height; auto.
Qed.

Lemma mapi_1 : forall (m: tree elt)(x:key)(e:elt),
    MapsTo x e m -> exists y, X.eq y x /\ MapsTo x (f y e) (mapi m).
Proof.
induction m; simpl; inversion_clear 1; auto.
exists k; auto.
destruct (IHm1 _ _ H0).
exists x0; intuition.
destruct (IHm2 _ _ H0).
exists x0; intuition.
Qed.

Lemma mapi_2 : forall (m: t elt)(x:key),
    In x (mapi m) -> In x m.
Proof.
induction m; simpl; inversion_clear 1; auto.
Qed.

Lemma mapi_bst : forall m, bst m -> bst (mapi m).
Proof.
induction m; simpl; auto.
inversion_clear 1; constructor; auto.
red; intros; apply H2; apply mapi_2; auto.
red; intros; apply H3; apply mapi_2; auto.
Qed.

End Mapi.

Section Map2.
Variable f : option elt -> option elt' -> option elt''.

Definition anti_elements (l:list (key*elt'')) := L.fold (@add _) l (empty _).

Definition map2 (m:t elt)(m':t elt') : t elt'' :=
  anti_elements (L.map2 f (elements m) (elements m')).

Lemma anti_elements_avl_aux : forall (l:list (key*elt''))(m:t elt''),
  avl m -> avl (L.fold (@add _) l m).
Proof.
unfold anti_elements; induction l.
simpl; auto.
simpl; destruct a; intros.
apply IHl.
apply add_avl; auto.
Qed.

Lemma anti_elements_avl : forall l, avl (anti_elements l).
Proof.
unfold anti_elements, empty; intros; apply anti_elements_avl_aux; auto.
Qed.

Lemma anti_elements_bst_aux : forall (l:list (key*elt''))(m:t elt''),
  bst m -> avl m -> bst (L.fold (@add _) l m).
Proof.
induction l.
simpl; auto.
simpl; destruct a; intros.
apply IHl.
apply add_bst; auto.
apply add_avl; auto.
Qed.

Lemma anti_elements_bst : forall l, bst (anti_elements l).
Proof.
unfold anti_elements, empty; intros; apply anti_elements_bst_aux; auto.
Qed.

Lemma anti_elements_mapsto_aux : forall (l:list (key*elt'')) m k e,
  bst m -> avl m -> NoDupA (eqk (elt:=elt'')) l ->
  (forall x, L.PX.In x l -> In x m -> False) ->
  (MapsTo k e (L.fold (@add _) l m) <-> L.PX.MapsTo k e l \/ MapsTo k e m).
Proof.
induction l.
simpl; auto.
intuition.
inversion H4.
simpl; destruct a; intros.
rewrite IHl; clear IHl.
apply add_bst; auto.
apply add_avl; auto.
inversion H1; auto.
intros.
inversion_clear H1.
assert (~X.eq x k).
 swap H5.
 destruct H3.
 apply InA_eqA with (x,x0); eauto.
apply (H2 x).
destruct H3; exists x0; auto.
revert H4; do 2 rewrite <- In_alt; destruct 1; exists x0; auto.
eapply add_3; eauto.
intuition.
assert (find k0 (add k e m) = Some e0).
 apply find_1; auto.
 apply add_bst; auto.
clear H4.
rewrite add_spec in H3; auto.
destruct (eq_dec k0 k).
inversion_clear H3; subst; auto.
right; apply find_2; auto.
inversion_clear H4; auto.
compute in H3; destruct H3.
subst; right; apply add_1; auto.
inversion_clear H1.
destruct (eq_dec k0 k).
destruct (H2 k); eauto.
right; apply add_2; auto.
Qed.

Lemma anti_elements_mapsto : forall l k e, NoDupA (eqk (elt:=elt'')) l ->
  (MapsTo k e (anti_elements l) <-> L.PX.MapsTo k e l).
Proof.
intros.
unfold anti_elements.
rewrite anti_elements_mapsto_aux; auto; unfold empty; auto.
inversion 2.
intuition.
inversion H1.
Qed.

Lemma map2_avl : forall (m: t elt)(m': t elt'), avl (map2 m m').
Proof.
unfold map2; intros; apply anti_elements_avl; auto.
Qed.

Lemma map2_bst : forall (m: t elt)(m': t elt'), bst (map2 m m').
Proof.
unfold map2; intros; apply anti_elements_bst; auto.
Qed.

Lemma find_elements : forall (elt:Set)(m: t elt) x, bst m ->
  L.find x (elements m) = find x m.
Proof.
intros.
case_eq (find x m); intros.
apply L.find_1.
apply elements_sort; auto.
red; rewrite elements_mapsto.
apply find_2; auto.
case_eq (L.find x (elements m)); auto; intros.
rewrite <- H0; symmetry.
apply find_1; auto.
rewrite <- elements_mapsto.
apply L.find_2; auto.
Qed.

Lemma find_anti_elements : forall (l: list (key*elt'')) x, sort (@ltk _) l ->
  find x (anti_elements l) = L.find x l.
Proof.
intros.
case_eq (L.find x l); intros.
apply find_1.
apply anti_elements_bst; auto.
rewrite anti_elements_mapsto.
apply L.PX.Sort_NoDupA; auto.
apply L.find_2; auto.
case_eq (find x (anti_elements l)); auto; intros.
rewrite <- H0; symmetry.
apply L.find_1; auto.
rewrite <- anti_elements_mapsto.
apply L.PX.Sort_NoDupA; auto.
apply find_2; auto.
Qed.

Lemma map2_1 : forall (m: t elt)(m': t elt')(x:key), bst m -> bst m' ->
  In x m \/ In x m' -> find x (map2 m m') = f (find x m) (find x m').
Proof.
unfold map2; intros.
rewrite find_anti_elements; auto.
rewrite <- find_elements; auto.
rewrite <- find_elements; auto.
apply L.map2_1; auto.
apply elements_sort; auto.
apply elements_sort; auto.
do 2 rewrite elements_in; auto.
apply L.map2_sorted; auto.
apply elements_sort; auto.
apply elements_sort; auto.
Qed.

Lemma map2_2 : forall (m: t elt)(m': t elt')(x:key), bst m -> bst m' ->
  In x (map2 m m') -> In x m \/ In x m'.
Proof.
unfold map2; intros.
do 2 rewrite <- elements_in.
apply L.map2_2 with (f:=f); auto.
apply elements_sort; auto.
apply elements_sort; auto.
revert H1.
rewrite <- In_alt.
destruct 1.
exists x0.
rewrite <- anti_elements_mapsto; auto.
apply L.PX.Sort_NoDupA; auto.
apply L.map2_sorted; auto.
apply elements_sort; auto.
apply elements_sort; auto.
Qed.

End Map2.
End Elts.
End Raw.

Encapsulation



Now, in order to really provide a functor implementing S, we need to encapsulate everything into a type of balanced binary search trees.

Module IntMake (I:Int)(X: OrderedType) <: S with Module E := X.

 Module E := X.
 Module Raw := Raw I X.

 Record bbst (elt:Set) : Set :=
  Bbst {this :> Raw.tree elt; is_bst : Raw.bst this; is_avl: Raw.avl this}.

 Definition t := bbst.
 Definition key := E.t.

 Section Elt.
 Variable elt elt' elt'': Set.

 Implicit Types m : t elt.
 Implicit Types x y : key.
 Implicit Types e : elt.

 Definition empty : t elt := Bbst (Raw.empty_bst elt) (Raw.empty_avl elt).
 Definition is_empty m : bool := Raw.is_empty m.(this).
 Definition add x e m : t elt :=
  Bbst (Raw.add_bst x e m.(is_bst) m.(is_avl)) (Raw.add_avl x e m.(is_avl)).
 Definition remove x m : t elt :=
  Bbst (Raw.remove_bst x m.(is_bst) m.(is_avl)) (Raw.remove_avl x m.(is_avl)).
 Definition mem x m : bool := Raw.mem x m.(this).
 Definition find x m : option elt := Raw.find x m.(this).
 Definition map f m : t elt' :=
  Bbst (Raw.map_bst f m.(is_bst)) (Raw.map_avl f m.(is_avl)).
 Definition mapi (f:key->elt->elt') m : t elt' :=
  Bbst (Raw.mapi_bst f m.(is_bst)) (Raw.mapi_avl f m.(is_avl)).
 Definition map2 f m (m':t elt') : t elt'' :=
  Bbst (Raw.map2_bst f m m') (Raw.map2_avl f m m').
 Definition elements m : list (key*elt) := Raw.elements m.(this).
 Definition fold (A:Set) (f:key->elt->A->A) m i := Raw.fold (A:=A) f m.(this) i.
 Definition equal cmp m m' : bool :=
   if (Raw.equal cmp m.(is_bst) m'.(is_bst)) then true else false.

 Definition MapsTo x e m : Prop := Raw.MapsTo x e m.(this).
 Definition In x m : Prop := Raw.In0 x m.(this).
 Definition Empty m : Prop := Raw.Empty m.(this).

 Definition eq_key : (key*elt) -> (key*elt) -> Prop := @Raw.PX.eqk elt.
 Definition eq_key_elt : (key*elt) -> (key*elt) -> Prop := @Raw.PX.eqke elt.
 Definition lt_key : (key*elt) -> (key*elt) -> Prop := @Raw.PX.ltk elt.

 Lemma MapsTo_1 : forall m x y e, E.eq x y -> MapsTo x e m -> MapsTo y e m.
 Proof. intros m; exact (@Raw.MapsTo_1 _ m.(this)). Qed.

 Lemma mem_1 : forall m x, In x m -> mem x m = true.
 Proof.
 unfold In, mem; intros m x; rewrite Raw.In_alt; simpl; apply Raw.mem_1; auto.
 apply m.(is_bst).
 Qed.

 Lemma mem_2 : forall m x, mem x m = true -> In x m.
 Proof.
 unfold In, mem; intros m x; rewrite Raw.In_alt; simpl; apply Raw.mem_2; auto.
 Qed.

 Lemma empty_1 : Empty empty.
 Proof. exact (@Raw.empty_1 elt). Qed.

 Lemma is_empty_1 : forall m, Empty m -> is_empty m = true.
 Proof. intros m; exact (@Raw.is_empty_1 _ m.(this)). Qed.
 Lemma is_empty_2 : forall m, is_empty m = true -> Empty m.
 Proof. intros m; exact (@Raw.is_empty_2 _ m.(this)). Qed.

 Lemma add_1 : forall m x y e, E.eq x y -> MapsTo y e (add x e m).
 Proof. intros m x y e; exact (@Raw.add_1 elt _ x y e m.(is_avl)). Qed.
 Lemma add_2 : forall m x y e e', ~ E.eq x y -> MapsTo y e m -> MapsTo y e (add x e' m).
 Proof. intros m x y e e'; exact (@Raw.add_2 elt _ x y e e' m.(is_avl)). Qed.
 Lemma add_3 : forall m x y e e', ~ E.eq x y -> MapsTo y e (add x e' m) -> MapsTo y e m.
 Proof. intros m x y e e'; exact (@Raw.add_3 elt _ x y e e' m.(is_avl)). Qed.

 Lemma remove_1 : forall m x y, E.eq x y -> ~ In y (remove x m).
 Proof.
 unfold In, remove; intros m x y; rewrite Raw.In_alt; simpl; apply Raw.remove_1; auto.
 apply m.(is_bst).
 apply m.(is_avl).
 Qed.
 Lemma remove_2 : forall m x y e, ~ E.eq x y -> MapsTo y e m -> MapsTo y e (remove x m).
 Proof. intros m x y e; exact (@Raw.remove_2 elt _ x y e m.(is_bst) m.(is_avl)). Qed.
 Lemma remove_3 : forall m x y e, MapsTo y e (remove x m) -> MapsTo y e m.
 Proof. intros m x y e; exact (@Raw.remove_3 elt _ x y e m.(is_bst) m.(is_avl)). Qed.

 Lemma find_1 : forall m x e, MapsTo x e m -> find x m = Some e.
 Proof. intros m x e; exact (@Raw.find_1 elt _ x e m.(is_bst)). Qed.
 Lemma find_2 : forall m x e, find x m = Some e -> MapsTo x e m.
 Proof. intros m; exact (@Raw.find_2 elt m.(this)). Qed.

 Lemma fold_1 : forall m (A : Set) (i : A) (f : key -> elt -> A -> A),
        fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i.
 Proof. intros m; exact (@Raw.fold_1 elt m.(this) m.(is_bst)). Qed.

 Lemma elements_1 : forall m x e,
   MapsTo x e m -> InA eq_key_elt (x,e) (elements m).
 Proof.
 intros; unfold elements, MapsTo, eq_key_elt; rewrite Raw.elements_mapsto; auto.
 Qed.

 Lemma elements_2 : forall m x e,
   InA eq_key_elt (x,e) (elements m) -> MapsTo x e m.
 Proof.
 intros; unfold elements, MapsTo, eq_key_elt; rewrite <- Raw.elements_mapsto; auto.
 Qed.

 Lemma elements_3 : forall m, sort lt_key (elements m).
 Proof. intros m; exact (@Raw.elements_sort elt m.(this) m.(is_bst)). Qed.

 Definition Equal cmp m m' :=
   (forall k, In k m <-> In k m') /\
   (forall k e e', MapsTo k e m -> MapsTo k e' m' -> cmp e e' = true).

 Lemma Equal_Equal : forall cmp m m', Equal cmp m m' <-> Raw.Equal cmp m m'.
 Proof.
 intros; unfold Equal, Raw.Equal, In; intuition.
 generalize (H0 k); do 2 rewrite Raw.In_alt; intuition.
 generalize (H0 k); do 2 rewrite Raw.In_alt; intuition.
 generalize (H0 k); do 2 rewrite <- Raw.In_alt; intuition.
 generalize (H0 k); do 2 rewrite <- Raw.In_alt; intuition.
 Qed.

 Lemma equal_1 : forall m m' cmp,
   Equal cmp m m' -> equal cmp m m' = true.
 Proof.
 unfold equal; intros m m' cmp; rewrite Equal_Equal.
 destruct (@Raw.equal _ cmp m m'); auto.
 Qed.

 Lemma equal_2 : forall m m' cmp,
   equal cmp m m' = true -> Equal cmp m m'.
 Proof.
 unfold equal; intros; rewrite Equal_Equal.
 destruct (@Raw.equal _ cmp m m'); auto; try discriminate.
 Qed.

 End Elt.

 Lemma map_1 : forall (elt elt':Set)(m: t elt)(x:key)(e:elt)(f:elt->elt'),
        MapsTo x e m -> MapsTo x (f e) (map f m).
 Proof. intros elt elt' m x e f; exact (@Raw.map_1 elt elt' f m.(this) x e). Qed.

 Lemma map_2 : forall (elt elt':Set)(m:t elt)(x:key)(f:elt->elt'), In x (map f m) -> In x m.
 Proof.
 intros elt elt' m x f; do 2 unfold In in *; do 2 rewrite Raw.In_alt; simpl.
 apply Raw.map_2; auto.
 Qed.

 Lemma mapi_1 : forall (elt elt':Set)(m: t elt)(x:key)(e:elt)
        (f:key->elt->elt'), MapsTo x e m ->
        exists y, E.eq y x /\ MapsTo x (f y e) (mapi f m).
 Proof. intros elt elt' m x e f; exact (@Raw.mapi_1 elt elt' f m.(this) x e). Qed.
 Lemma mapi_2 : forall (elt elt':Set)(m: t elt)(x:key)
        (f:key->elt->elt'), In x (mapi f m) -> In x m.
 Proof.
 intros elt elt' m x f; unfold In in *; do 2 rewrite Raw.In_alt; simpl; apply Raw.mapi_2; auto.
 Qed.

 Lemma map2_1 : forall (elt elt' elt'':Set)(m: t elt)(m': t elt')
    (x:key)(f:option elt->option elt'->option elt''),
    In x m \/ In x m' ->
    find x (map2 f m m') = f (find x m) (find x m').
 Proof.
 unfold find, map2, In; intros elt elt' elt'' m m' x f.
 do 2 rewrite Raw.In_alt; intros; simpl; apply Raw.map2_1; auto.
 apply m.(is_bst).
 apply m'.(is_bst).
 Qed.

 Lemma map2_2 : forall (elt elt' elt'':Set)(m: t elt)(m': t elt')
     (x:key)(f:option elt->option elt'->option elt''),
     In x (map2 f m m') -> In x m \/ In x m'.
 Proof.
 unfold In, map2; intros elt elt' elt'' m m' x f.
 do 3 rewrite Raw.In_alt; intros; simpl in *; eapply Raw.map2_2; eauto.
 apply m.(is_bst).
 apply m'.(is_bst).
 Qed.

End IntMake.

Module IntMake_ord (I:Int)(X: OrderedType)(D : OrderedType) <:
    Sord with Module Data := D
            with Module MapS.E := X.

  Module Data := D.
  Module MapS := IntMake(I)(X).
  Import MapS.

  Module MD := OrderedTypeFacts(D).
  Import MD.

  Module LO := FMapList.Make_ord(X)(D).

  Definition t := MapS.t D.t.

  Definition cmp e e' := match D.compare e e' with EQ _ => true | _ => false end.

  Definition elements (m:t) :=
    LO.MapS.Build_slist (Raw.elements_sort m.(is_bst)).

  Definition eq : t -> t -> Prop :=
    fun m1 m2 => LO.eq (elements m1) (elements m2).

  Definition lt : t -> t -> Prop :=
    fun m1 m2 => LO.lt (elements m1) (elements m2).

  Lemma eq_1 : forall m m', Equal cmp m m' -> eq m m'.
  Proof.
  intros m m'.
  unfold eq.
  rewrite Equal_Equal.
  rewrite Raw.Equal_elements.
  intros.
  apply LO.eq_1.
  auto.
  Qed.

  Lemma eq_2 : forall m m', eq m m' -> Equal cmp m m'.
  Proof.
  intros m m'.
  unfold eq.
  rewrite Equal_Equal.
  rewrite Raw.Equal_elements.
  intros.
  generalize (LO.eq_2 H).
  auto.
  Qed.

  Lemma eq_refl : forall m : t, eq m m.
  Proof.
  unfold eq; intros; apply LO.eq_refl.
  Qed.

  Lemma eq_sym : forall m1 m2 : t, eq m1 m2 -> eq m2 m1.
  Proof.
  unfold eq; intros; apply LO.eq_sym; auto.
  Qed.

  Lemma eq_trans : forall m1 m2 m3 : t, eq m1 m2 -> eq m2 m3 -> eq m1 m3.
  Proof.
  unfold eq; intros; eapply LO.eq_trans; eauto.
  Qed.

  Lemma lt_trans : forall m1 m2 m3 : t, lt m1 m2 -> lt m2 m3 -> lt m1 m3.
  Proof.
  unfold lt; intros; eapply LO.lt_trans; eauto.
  Qed.

  Lemma lt_not_eq : forall m1 m2 : t, lt m1 m2 -> ~ eq m1 m2.
  Proof.
  unfold lt, eq; intros; apply LO.lt_not_eq; auto.
  Qed.

  Import Raw.

  Definition flatten_slist (e:enumeration D.t)(He:sorted_e e) :=
   LO.MapS.Build_slist (sorted_flatten_e He).

  Open Local Scope Z_scope.

  Definition compare_aux :
   forall (e1 e2:enumeration D.t)(He1:sorted_e e1)(He2: sorted_e e2),
   Compare LO.lt LO.eq (flatten_slist He1) (flatten_slist He2).
  Proof.
  intros e1 e2; pattern e1, e2 in |- *; apply compare_rec2.
  simple destruct x; simple destruct x'; intuition.
  constructor 2.
  compute; auto.
  constructor 1.
  compute; auto.
  constructor 3.
  compute; auto.
  case (X.compare k k0); intro.
  constructor 1.
  compute; MX.elim_comp; auto.
  destruct (D.compare t t1).
  constructor 1.
  compute; MX.elim_comp; auto.
  destruct (@cons _ t0 e) as [c1 (H2,(H3,H4))]; try inversion_clear He1; auto.
  destruct (@cons _ t2 e0) as [c2 (H5,(H6,H7))]; try inversion_clear He2; auto.
  assert (measure_e c1 + measure_e c2 <
              measure_e (More k t t0 e) +
              measure_e (More k0 t1 t2 e0)).
  unfold measure_e in *; fold measure_e in *; omega.
  destruct (H c1 c2 H0 H2 H5); clear H.
  constructor 1.
  unfold flatten_slist, LO.lt in *; simpl; simpl in l.
  MX.elim_comp.
  right; split; auto.
  rewrite <- H7; rewrite <- H4; auto.
  constructor 2.
  unfold flatten_slist, LO.eq in *; simpl; simpl in e5.
  MX.elim_comp.
  split; auto.
  rewrite <- H7; rewrite <- H4; auto.
  constructor 3.
  unfold flatten_slist, LO.lt in *; simpl; simpl in l.
  MX.elim_comp.
  right; split; auto.
  rewrite <- H7; rewrite <- H4; auto.
  constructor 3.
  compute; MX.elim_comp; auto.
  constructor 3.
  compute; MX.elim_comp; auto.
  Qed.

  Definition compare : forall m1 m2, Compare lt eq m1 m2.
  Proof.
  intros (m1,m1_bst,m1_avl) (m2,m2_bst,m2_avl); simpl.
  destruct (@cons _ m1 (End _)) as [x1 (H1,H11)]; auto.
  apply SortedEEnd.
  inversion_clear 2.
  destruct (@cons _ m2 (End _)) as [x2 (H2,H22)]; auto.
  apply SortedEEnd.
  inversion_clear 2.
  simpl in H11; rewrite <- app_nil_end in H11.
  simpl in H22; rewrite <- app_nil_end in H22.
  destruct (compare_aux H1 H2); intuition.
  constructor 1.
  unfold lt, LO.lt, IntMake_ord.elements, flatten_slist in *; simpl in *.
  rewrite <- H0; rewrite <- H4; auto.
  constructor 2.
  unfold eq, LO.eq, IntMake_ord.elements, flatten_slist in *; simpl in *.
  rewrite <- H0; rewrite <- H4; auto.
  constructor 3.
  unfold lt, LO.lt, IntMake_ord.elements, flatten_slist in *; simpl in *.
  rewrite <- H0; rewrite <- H4; auto.
  Qed.

End IntMake_ord.

Module Make (X: OrderedType) <: S with Module E := X
 :=IntMake(Z_as_Int)(X).

Module Make_ord (X: OrderedType)(D: OrderedType)
 <: Sord with Module Data := D
            with Module MapS.E := X
 :=IntMake_ord(Z_as_Int)(X)(D).