Library Coq.Relations.Relations

Require Export Relation_Definitions.
Require Export Relation_Operators.
Require Export Operators_Properties.

Lemma inverse_image_of_equivalence :
  forall (A B:Type) (f:A -> B) (r:relation B),
    equivalence B r -> equivalence A (fun x y:A => r (f x) (f y)).
Proof.
  intros; split; elim H; red in |- *; auto.
  intros _ equiv_trans _ x y z H0 H1; apply equiv_trans with (f y); assumption.
Qed.

Lemma inverse_image_of_eq :
  forall (A B:Type) (f:A -> B), equivalence A (fun x y:A => f x = f y).
Proof.
  split; red in |- *;
    [ (* reflexivity *) reflexivity | (* transitivity *) intros; transitivity (f y); assumption | (* symmetry *) intros; symmetry in |- *; assumption ].
Qed.