Library Coq.Init.Logic_Type

This module defines type constructors for types in Type (Datatypes.v and Logic.v defined them for types in Set)

Set Implicit Arguments.

Require Import Datatypes.
Require Export Logic.

Negation of a type in Type

Definition notT (A:Type) := A -> False.

Properties of identity

Section identity_is_a_congruence.

 Variables A B : Type.
 Variable f : A -> B.

 Variables x y z : A.

 Lemma sym_id : identity x y -> identity y x.
 Proof.
  destruct 1; trivial.
 Qed.

 Lemma trans_id : identity x y -> identity y z -> identity x z.
 Proof.
  destruct 2; trivial.
 Qed.

 Lemma congr_id : identity x y -> identity (f x) (f y).
 Proof.
  destruct 1; trivial.
 Qed.

 Lemma sym_not_id : notT (identity x y) -> notT (identity y x).
 Proof.
  red in |- *; intros H H'; apply H; destruct H'; trivial.
 Qed.

End identity_is_a_congruence.

Definition identity_ind_r :
  forall (A:Type) (a:A) (P:A -> Prop), P a -> forall y:A, identity y a -> P y.
 intros A x P H y H0; case sym_id with (1 := H0); trivial.
Defined.

Definition identity_rec_r :
  forall (A:Type) (a:A) (P:A -> Set), P a -> forall y:A, identity y a -> P y.
 intros A x P H y H0; case sym_id with (1 := H0); trivial.
Defined.

Definition identity_rect_r :
  forall (A:Type) (a:A) (P:A -> Type), P a -> forall y:A, identity y a -> P y.
 intros A x P H y H0; case sym_id with (1 := H0); trivial.
Defined.

Hint Immediate sym_id sym_not_id: core v62.