Library Coq.Sorting.PermutSetoid

Require Import Omega.
Require Import Relations.
Require Import List.
Require Import Multiset.
Require Import Permutation.
Require Import SetoidList.

Set Implicit Arguments.

This file contains additional results about permutations with respect to an setoid equality (i.e. an equivalence relation).

Section Perm.

Variable A : Set.
Variable eqA : relation A.
Hypothesis eqA_dec : forall x y:A, {eqA x y} + {~ eqA x y}.

Notation permutation := (permutation _ eqA_dec).
Notation list_contents := (list_contents _ eqA_dec).

The following lemmas need some knowledge on eqA

Variable eqA_refl : forall x, eqA x x.
Variable eqA_sym : forall x y, eqA x y -> eqA y x.
Variable eqA_trans : forall x y z, eqA x y -> eqA y z -> eqA x z.

we can use multiplicity to define InA and NoDupA.

Lemma multiplicity_InA :
  forall l a, InA eqA a l <-> 0 < multiplicity (list_contents l) a.
Proof.
  induction l.
  simpl.
  split; inversion 1.
  simpl.
  split; intros.
  inversion_clear H.
  destruct (eqA_dec a a0) as [_|H1]; auto with arith.
  destruct H1; auto.
  destruct (eqA_dec a a0); auto with arith.
  simpl; rewrite <- IHl; auto.
  destruct (eqA_dec a a0) as [H0|H0]; auto.
  simpl in H.
  constructor 2; rewrite IHl; auto.
Qed.

Lemma multiplicity_InA_O :
  forall l a, ~ InA eqA a l -> multiplicity (list_contents l) a = 0.
Proof.
  intros l a; rewrite multiplicity_InA;
    destruct (multiplicity (list_contents l) a); auto with arith.
  destruct 1; auto with arith.
Qed.

Lemma multiplicity_InA_S :
  forall l a, InA eqA a l -> multiplicity (list_contents l) a >= 1.
Proof.
  intros l a; rewrite multiplicity_InA; auto with arith.
Qed.

Lemma multiplicity_NoDupA : forall l,
  NoDupA eqA l <-> (forall a, multiplicity (list_contents l) a <= 1).
Proof.
  induction l.
  simpl.
  split; auto with arith.
  split; simpl.
  inversion_clear 1.
  rewrite IHl in H1.
  intros; destruct (eqA_dec a a0) as [H2|H2]; simpl; auto.
  rewrite multiplicity_InA_O; auto.
  swap H0.
  apply InA_eqA with a0; auto.
  intros; constructor.
  rewrite multiplicity_InA.
  generalize (H a).
  destruct (eqA_dec a a) as [H0|H0].
  destruct (multiplicity (list_contents l) a); auto with arith.
  simpl; inversion 1.
  inversion H3.
  destruct H0; auto.
  rewrite IHl; intros.
  generalize (H a0); auto with arith.
  destruct (eqA_dec a a0); simpl; auto with arith.
Qed.

Permutation is compatible with InA.
Lemma permut_InA_InA :
  forall l1 l2 e, permutation l1 l2 -> InA eqA e l1 -> InA eqA e l2.
Proof.
  intros l1 l2 e.
  do 2 rewrite multiplicity_InA.
  unfold Permutation.permutation, meq.
  intros H;rewrite H; auto.
Qed.

Lemma permut_cons_InA :
  forall l1 l2 e, permutation (e :: l1) l2 -> InA eqA e l2.
Proof.
  intros; apply (permut_InA_InA (e:=e) H); auto.
Qed.

Permutation of an empty list.
Lemma permut_nil :
  forall l, permutation l nil -> l = nil.
Proof.
  intro l; destruct l as [ | e l ]; trivial.
  assert (InA eqA e (e::l)) by auto.
  intro Abs; generalize (permut_InA_InA Abs H).
  inversion 1.
Qed.

Permutation for short lists.

Lemma permut_length_1:
  forall a b, permutation (a :: nil) (b :: nil) -> eqA a b.
Proof.
  intros a b; unfold Permutation.permutation, meq; intro P;
  generalize (P b); clear P; simpl.
  destruct (eqA_dec b b) as [H|H]; [ | destruct H; auto].
  destruct (eqA_dec a b); simpl; auto; intros; discriminate.
Qed.

Lemma permut_length_2 :
  forall a1 b1 a2 b2, permutation (a1 :: b1 :: nil) (a2 :: b2 :: nil) ->
    (eqA a1 a2) /\ (eqA b1 b2) \/ (eqA a1 b2) /\ (eqA a2 b1).
Proof.
  intros a1 b1 a2 b2 P.
  assert (H:=permut_cons_InA P).
  inversion_clear H.
  left; split; auto.
  apply permut_length_1.
  red; red; intros.
  generalize (P a); clear P; simpl.
  destruct (eqA_dec a1 a) as [H2|H2];
    destruct (eqA_dec a2 a) as [H3|H3]; auto.
  destruct H3; apply eqA_trans with a1; auto.
  destruct H2; apply eqA_trans with a2; auto.
  right.
  inversion_clear H0; [|inversion H].
  split; auto.
  apply permut_length_1.
  red; red; intros.
  generalize (P a); clear P; simpl.
  destruct (eqA_dec a1 a) as [H2|H2];
    destruct (eqA_dec b2 a) as [H3|H3]; auto.
  simpl; rewrite <- plus_n_Sm; inversion 1; auto.
  destruct H3; apply eqA_trans with a1; auto.
  destruct H2; apply eqA_trans with b2; auto.
Qed.

Permutation is compatible with length.
Lemma permut_length :
  forall l1 l2, permutation l1 l2 -> length l1 = length l2.
Proof.
  induction l1; intros l2 H.
  rewrite (permut_nil (permut_sym H)); auto.
  assert (H0:=permut_cons_InA H).
  destruct (InA_split H0) as (h2,(b,(t2,(H1,H2)))).
  subst l2.
  rewrite app_length.
  simpl; rewrite <- plus_n_Sm; f_equal.
  rewrite <- app_length.
  apply IHl1.
  apply permut_remove_hd with b.
  apply permut_tran with (a::l1); auto.
  revert H1; unfold Permutation.permutation, meq; simpl.
  intros; f_equal; auto.
  destruct (eqA_dec b a0) as [H2|H2];
    destruct (eqA_dec a a0) as [H3|H3]; auto.
  destruct H3; apply eqA_trans with b; auto.
  destruct H2; apply eqA_trans with a; auto.
Qed.

Lemma NoDupA_eqlistA_permut :
  forall l l', NoDupA eqA l -> NoDupA eqA l' ->
    eqlistA eqA l l' -> permutation l l'.
Proof.
  intros.
  red; unfold meq; intros.
  rewrite multiplicity_NoDupA in H, H0.
  generalize (H a) (H0 a) (H1 a); clear H H0 H1.
  do 2 rewrite multiplicity_InA.
  destruct 3; omega.
Qed.

Variable B : Set.
Variable eqB : B->B->Prop.
Variable eqB_dec : forall x y:B, { eqB x y }+{ ~eqB x y }.
Variable eqB_trans : forall x y z, eqB x y -> eqB y z -> eqB x z.

Permutation is compatible with map.

Lemma permut_map :
  forall f,
    (forall x y, eqA x y -> eqB (f x) (f y)) ->
    forall l1 l2, permutation l1 l2 ->
      Permutation.permutation _ eqB_dec (map f l1) (map f l2).
Proof.
  intros f; induction l1.
  intros l2 P; rewrite (permut_nil (permut_sym P)); apply permut_refl.
  intros l2 P.
  simpl.
  assert (H0:=permut_cons_InA P).
  destruct (InA_split H0) as (h2,(b,(t2,(H1,H2)))).
  subst l2.
  rewrite map_app.
  simpl.
  apply permut_tran with (f b :: map f l1).
  revert H1; unfold Permutation.permutation, meq; simpl.
  intros; f_equal; auto.
  destruct (eqB_dec (f b) a0) as [H2|H2];
    destruct (eqB_dec (f a) a0) as [H3|H3]; auto.
  destruct H3; apply eqB_trans with (f b); auto.
  destruct H2; apply eqB_trans with (f a); auto.
  apply permut_add_cons_inside.
  rewrite <- map_app.
  apply IHl1; auto.
  apply permut_remove_hd with b.
  apply permut_tran with (a::l1); auto.
  revert H1; unfold Permutation.permutation, meq; simpl.
  intros; f_equal; auto.
  destruct (eqA_dec b a0) as [H2|H2];
    destruct (eqA_dec a a0) as [H3|H3]; auto.
  destruct H3; apply eqA_trans with b; auto.
  destruct H2; apply eqA_trans with a; auto.
Qed.

End Perm.