Library Coq.ZArith.Zlogarithm
The integer logarithms with base 2.
There are three logarithms, depending on the rounding of the real 2-based logarithm:
There are three logarithms, depending on the rounding of the real 2-based logarithm:
-
Log_inf
:y = (Log_inf x) iff 2^y <= x < 2^(y+1)
i.e.Log_inf x
is the biggest integer that is smaller thanLog x
-
Log_sup
:y = (Log_sup x) iff 2^(y-1) < x <= 2^y
i.e.Log_inf x
is the smallest integer that is bigger thanLog x
-
Log_nearest
:y= (Log_nearest x) iff 2^(y-1/2) < x <= 2^(y+1/2)
i.e.Log_nearest x
is the integer nearest fromLog x
Require Import ZArith_base.
Require Import Omega.
Require Import Zcomplements.
Require Import Zpower.
Open Local Scope Z_scope.
Section Log_pos.
First we build
log_inf
and log_sup
Fixpoint log_inf (p:positive) : Z :=
match p with
| xH => 0 | xO q => Zsucc (log_inf q) | xI q => Zsucc (log_inf q) end.
Fixpoint log_sup (p:positive) : Z :=
match p with
| xH => 0 | xO n => Zsucc (log_sup n) | xI n => Zsucc (Zsucc (log_inf n)) end.
Hint Unfold log_inf log_sup.
Then we give the specifications of
log_inf
and log_sup
and prove their validity
Hint Resolve Zle_trans: zarith.
Theorem log_inf_correct :
forall x:positive,
0 <= log_inf x /\ two_p (log_inf x) <= Zpos x < two_p (Zsucc (log_inf x)).
simple induction x; intros; simpl in |- *;
[ elim H; intros Hp HR; clear H; split;
[ auto with zarith
| conditional apply Zle_le_succ; trivial rewrite
two_p_S with (x := Zsucc (log_inf p));
conditional trivial rewrite two_p_S;
conditional trivial rewrite two_p_S in HR; rewrite (BinInt.Zpos_xI p);
omega ]
| elim H; intros Hp HR; clear H; split;
[ auto with zarith
| conditional apply Zle_le_succ; trivial rewrite
two_p_S with (x := Zsucc (log_inf p));
conditional trivial rewrite two_p_S;
conditional trivial rewrite two_p_S in HR; rewrite (BinInt.Zpos_xO p);
omega ]
| unfold two_power_pos in |- *; unfold shift_pos in |- *; simpl in |- *;
omega ].
Qed.
Definition log_inf_correct1 (p:positive) := proj1 (log_inf_correct p).
Definition log_inf_correct2 (p:positive) := proj2 (log_inf_correct p).
Opaque log_inf_correct1 log_inf_correct2.
Hint Resolve log_inf_correct1 log_inf_correct2: zarith.
Lemma log_sup_correct1 : forall p:positive, 0 <= log_sup p.
Proof.
simple induction p; intros; simpl in |- *; auto with zarith.
Qed.
For every
p
, either p
is a power of two and (log_inf p)=(log_sup p)
either (log_sup p)=(log_inf p)+1
Theorem log_sup_log_inf :
forall p:positive,
IF Zpos p = two_p (log_inf p) then Zpos p = two_p (log_sup p)
else log_sup p = Zsucc (log_inf p).
Proof.
simple induction p; intros;
[ elim H; right; simpl in |- *;
rewrite (two_p_S (log_inf p0) (log_inf_correct1 p0));
rewrite BinInt.Zpos_xI; unfold Zsucc in |- *; omega
| elim H; clear H; intro Hif;
[ left; simpl in |- *;
rewrite (two_p_S (log_inf p0) (log_inf_correct1 p0));
rewrite (two_p_S (log_sup p0) (log_sup_correct1 p0));
rewrite <- (proj1 Hif); rewrite <- (proj2 Hif);
auto
| right; simpl in |- *;
rewrite (two_p_S (log_inf p0) (log_inf_correct1 p0));
rewrite BinInt.Zpos_xO; unfold Zsucc in |- *;
omega ]
| left; auto ].
Qed.
Theorem log_sup_correct2 :
forall x:positive, two_p (Zpred (log_sup x)) < Zpos x <= two_p (log_sup x).
Proof.
intro.
elim (log_sup_log_inf x).
intros [E1 E2]; rewrite E2.
split; [ apply two_p_pred; apply log_sup_correct1 | apply Zle_refl ].
intros [E1 E2]; rewrite E2.
rewrite <- (Zpred_succ (log_inf x)).
generalize (log_inf_correct2 x); omega.
Qed.
Lemma log_inf_le_log_sup : forall p:positive, log_inf p <= log_sup p.
Proof.
simple induction p; simpl in |- *; intros; omega.
Qed.
Lemma log_sup_le_Slog_inf : forall p:positive, log_sup p <= Zsucc (log_inf p).
Proof.
simple induction p; simpl in |- *; intros; omega.
Qed.
Now it's possible to specify and build the
Log
rounded to the nearest
Fixpoint log_near (x:positive) : Z :=
match x with
| xH => 0
| xO xH => 1
| xI xH => 2
| xO y => Zsucc (log_near y)
| xI y => Zsucc (log_near y)
end.
Theorem log_near_correct1 : forall p:positive, 0 <= log_near p.
Proof.
simple induction p; simpl in |- *; intros;
[ elim p0; auto with zarith
| elim p0; auto with zarith
| trivial with zarith ].
intros; apply Zle_le_succ.
generalize H0; elim p1; intros; simpl in |- *;
[ assumption | assumption | apply Zorder.Zle_0_pos ].
intros; apply Zle_le_succ.
generalize H0; elim p1; intros; simpl in |- *;
[ assumption | assumption | apply Zorder.Zle_0_pos ].
Qed.
Theorem log_near_correct2 :
forall p:positive, log_near p = log_inf p \/ log_near p = log_sup p.
Proof.
simple induction p.
intros p0 [Einf| Esup].
simpl in |- *. rewrite Einf.
case p0; [ left | left | right ]; reflexivity.
simpl in |- *; rewrite Esup.
elim (log_sup_log_inf p0).
generalize (log_inf_le_log_sup p0).
generalize (log_sup_le_Slog_inf p0).
case p0; auto with zarith.
intros; omega.
case p0; intros; auto with zarith.
intros p0 [Einf| Esup].
simpl in |- *.
repeat rewrite Einf.
case p0; intros; auto with zarith.
simpl in |- *.
repeat rewrite Esup.
case p0; intros; auto with zarith.
auto.
Qed.
End Log_pos.
Section divers.
Number of significative digits.
Definition N_digits (x:Z) :=
match x with
| Zpos p => log_inf p
| Zneg p => log_inf p
| Z0 => 0
end.
Lemma ZERO_le_N_digits : forall x:Z, 0 <= N_digits x.
Proof.
simple induction x; simpl in |- *;
[ apply Zle_refl | exact log_inf_correct1 | exact log_inf_correct1 ].
Qed.
Lemma log_inf_shift_nat : forall n:nat, log_inf (shift_nat n 1) = Z_of_nat n.
Proof.
simple induction n; intros;
[ try trivial | rewrite Znat.inj_S; rewrite <- H; reflexivity ].
Qed.
Lemma log_sup_shift_nat : forall n:nat, log_sup (shift_nat n 1) = Z_of_nat n.
Proof.
simple induction n; intros;
[ try trivial | rewrite Znat.inj_S; rewrite <- H; reflexivity ].
Qed.
Is_power p
means that p is a power of two
Fixpoint Is_power (p:positive) : Prop :=
match p with
| xH => True
| xO q => Is_power q
| xI q => False
end.
Lemma Is_power_correct :
forall p:positive, Is_power p <-> (exists y : nat, p = shift_nat y 1).
Proof.
split;
[ elim p;
[ simpl in |- *; tauto
| simpl in |- *; intros; generalize (H H0); intro H1; elim H1;
intros y0 Hy0; exists (S y0); rewrite Hy0; reflexivity
| intro; exists 0%nat; reflexivity ]
| intros; elim H; intros; rewrite H0; elim x; intros; simpl in |- *; trivial ].
Qed.
Lemma Is_power_or : forall p:positive, Is_power p \/ ~ Is_power p.
Proof.
simple induction p;
[ intros; right; simpl in |- *; tauto
| intros; elim H;
[ intros; left; simpl in |- *; exact H0
| intros; right; simpl in |- *; exact H0 ]
| left; simpl in |- *; trivial ].
Qed.
End divers.