Library Coq.ZArith.Zminmax
Require Import Zmin Zmax.
Require Import BinInt Zorder.
Open Local Scope Z_scope.
Lattice properties of min and max on Z
Absorption
Lemma Zmin_max_absorption_r_r : forall n m, Zmax n (Zmin n m) = n.
Proof.
intros; apply Zmin_case_strong; intro; apply Zmax_case_strong; intro;
reflexivity || apply Zle_antisym; trivial.
Qed.
Lemma Zmax_min_absorption_r_r : forall n m, Zmin n (Zmax n m) = n.
Proof.
intros; apply Zmax_case_strong; intro; apply Zmin_case_strong; intro;
reflexivity || apply Zle_antisym; trivial.
Qed.
Distributivity
Lemma Zmax_min_distr_r :
forall n m p, Zmax n (Zmin m p) = Zmin (Zmax n m) (Zmax n p).
Proof.
intros.
repeat apply Zmax_case_strong; repeat apply Zmin_case_strong; intros;
reflexivity ||
apply Zle_antisym; (assumption || eapply Zle_trans; eassumption).
Qed.
Lemma Zmin_max_distr_r :
forall n m p, Zmin n (Zmax m p) = Zmax (Zmin n m) (Zmin n p).
Proof.
intros.
repeat apply Zmax_case_strong; repeat apply Zmin_case_strong; intros;
reflexivity ||
apply Zle_antisym; (assumption || eapply Zle_trans; eassumption).
Qed.
Modularity
Lemma Zmax_min_modular_r :
forall n m p, Zmax n (Zmin m (Zmax n p)) = Zmin (Zmax n m) (Zmax n p).
Proof.
intros; repeat apply Zmax_case_strong; repeat apply Zmin_case_strong; intros;
reflexivity ||
apply Zle_antisym; (assumption || eapply Zle_trans; eassumption).
Qed.
Lemma Zmin_max_modular_r :
forall n m p, Zmin n (Zmax m (Zmin n p)) = Zmax (Zmin n m) (Zmin n p).
Proof.
intros; repeat apply Zmax_case_strong; repeat apply Zmin_case_strong; intros;
reflexivity ||
apply Zle_antisym; (assumption || eapply Zle_trans; eassumption).
Qed.
Disassociativity
Lemma max_min_disassoc : forall n m p, Zmin n (Zmax m p) <= Zmax (Zmin n m) p.
Proof.
intros; repeat apply Zmax_case_strong; repeat apply Zmin_case_strong; intros;
apply Zle_refl || (assumption || eapply Zle_trans; eassumption).
Qed.