Library Coq.Lists.ListSet

A Library for finite sets, implemented as lists

List is loaded, but not exported. This allow to "hide" the definitions, functions and theorems of List and to see only the ones of ListSet

Require Import List.

Set Implicit Arguments.

Section first_definitions.

  Variable A : Set.
  Hypothesis Aeq_dec : forall x y:A, {x = y} + {x <> y}.

  Definition set := list A.

  Definition empty_set : set := nil.

  Fixpoint set_add (a:A) (x:set) {struct x} : set :=
    match x with
    | nil => a :: nil
    | a1 :: x1 =>
        match Aeq_dec a a1 with
        | left _ => a1 :: x1
        | right _ => a1 :: set_add a x1
        end
    end.

  Fixpoint set_mem (a:A) (x:set) {struct x} : bool :=
    match x with
    | nil => false
    | a1 :: x1 =>
        match Aeq_dec a a1 with
        | left _ => true
        | right _ => set_mem a x1
        end
    end.

If a belongs to x, removes a from x. If not, does nothing
  Fixpoint set_remove (a:A) (x:set) {struct x} : set :=
    match x with
    | nil => empty_set
    | a1 :: x1 =>
        match Aeq_dec a a1 with
        | left _ => x1
        | right _ => a1 :: set_remove a x1
        end
    end.

  Fixpoint set_inter (x:set) : set -> set :=
    match x with
    | nil => fun y => nil
    | a1 :: x1 =>
        fun y =>
          if set_mem a1 y then a1 :: set_inter x1 y else set_inter x1 y
    end.

  Fixpoint set_union (x y:set) {struct y} : set :=
    match y with
    | nil => x
    | a1 :: y1 => set_add a1 (set_union x y1)
    end.

returns the set of all els of x that does not belong to y
  Fixpoint set_diff (x y:set) {struct x} : set :=
    match x with
    | nil => nil
    | a1 :: x1 =>
        if set_mem a1 y then set_diff x1 y else set_add a1 (set_diff x1 y)
    end.

  Definition set_In : A -> set -> Prop := In (A:=A).

  Lemma set_In_dec : forall (a:A) (x:set), {set_In a x} + {~ set_In a x}.

  Proof.
    unfold set_In in |- *.
    simple induction x.
    auto.
    intros a0 x0 Ha0. case (Aeq_dec a a0); intro eq.
    rewrite eq; simpl in |- *; auto with datatypes.
    elim Ha0.
    auto with datatypes.
    right; simpl in |- *; unfold not in |- *; intros [Hc1| Hc2];
     auto with datatypes.
  Qed.

  Lemma set_mem_ind :
   forall (B:Set) (P:B -> Prop) (y z:B) (a:A) (x:set),
     (set_In a x -> P y) -> P z -> P (if set_mem a x then y else z).

  Proof.
    simple induction x; simpl in |- *; intros.
    assumption.
    elim (Aeq_dec a a0); auto with datatypes.
  Qed.

  Lemma set_mem_ind2 :
   forall (B:Set) (P:B -> Prop) (y z:B) (a:A) (x:set),
     (set_In a x -> P y) ->
     (~ set_In a x -> P z) -> P (if set_mem a x then y else z).

  Proof.
    simple induction x; simpl in |- *; intros.
    apply H0; red in |- *; trivial.
    case (Aeq_dec a a0); auto with datatypes.
    intro; apply H; intros; auto.
    apply H1; red in |- *; intro.
    case H3; auto.
  Qed.


  Lemma set_mem_correct1 :
   forall (a:A) (x:set), set_mem a x = true -> set_In a x.
  Proof.
    simple induction x; simpl in |- *.
    discriminate.
    intros a0 l; elim (Aeq_dec a a0); auto with datatypes.
  Qed.

  Lemma set_mem_correct2 :
   forall (a:A) (x:set), set_In a x -> set_mem a x = true.
  Proof.
    simple induction x; simpl in |- *.
    intro Ha; elim Ha.
    intros a0 l; elim (Aeq_dec a a0); auto with datatypes.
    intros H1 H2 [H3| H4].
    absurd (a0 = a); auto with datatypes.
    auto with datatypes.
  Qed.

  Lemma set_mem_complete1 :
   forall (a:A) (x:set), set_mem a x = false -> ~ set_In a x.
  Proof.
    simple induction x; simpl in |- *.
    tauto.
    intros a0 l; elim (Aeq_dec a a0).
    intros; discriminate H0.
    unfold not in |- *; intros; elim H1; auto with datatypes.
  Qed.

  Lemma set_mem_complete2 :
   forall (a:A) (x:set), ~ set_In a x -> set_mem a x = false.
  Proof.
    simple induction x; simpl in |- *.
    tauto.
    intros a0 l; elim (Aeq_dec a a0).
    intros; elim H0; auto with datatypes.
    tauto.
  Qed.

  Lemma set_add_intro1 :
   forall (a b:A) (x:set), set_In a x -> set_In a (set_add b x).

  Proof.
    unfold set_In in |- *; simple induction x; simpl in |- *.
    auto with datatypes.
    intros a0 l H [Ha0a| Hal].
    elim (Aeq_dec b a0); left; assumption.
    elim (Aeq_dec b a0); right; [ assumption | auto with datatypes ].
  Qed.

  Lemma set_add_intro2 :
   forall (a b:A) (x:set), a = b -> set_In a (set_add b x).

  Proof.
    unfold set_In in |- *; simple induction x; simpl in |- *.
    auto with datatypes.
    intros a0 l H Hab.
    elim (Aeq_dec b a0);
     [ rewrite Hab; intro Hba0; rewrite Hba0; simpl in |- *; auto with datatypes | auto with datatypes ].
  Qed.

  Hint Resolve set_add_intro1 set_add_intro2.

  Lemma set_add_intro :
   forall (a b:A) (x:set), a = b \/ set_In a x -> set_In a (set_add b x).

  Proof.
    intros a b x [H1| H2]; auto with datatypes.
  Qed.

  Lemma set_add_elim :
   forall (a b:A) (x:set), set_In a (set_add b x) -> a = b \/ set_In a x.

  Proof.
    unfold set_In in |- *.
    simple induction x.
    simpl in |- *; intros [H1| H2]; auto with datatypes.
    simpl in |- *; do 3 intro.
    elim (Aeq_dec b a0).
    simpl in |- *; tauto.
    simpl in |- *; intros; elim H0.
    trivial with datatypes.
    tauto.
    tauto.
  Qed.

  Lemma set_add_elim2 :
   forall (a b:A) (x:set), set_In a (set_add b x) -> a <> b -> set_In a x.
   intros a b x H; case (set_add_elim _ _ _ H); intros; trivial.
   case H1; trivial.
   Qed.

  Hint Resolve set_add_intro set_add_elim set_add_elim2.

  Lemma set_add_not_empty : forall (a:A) (x:set), set_add a x <> empty_set.
  Proof.
    simple induction x; simpl in |- *.
    discriminate.
    intros; elim (Aeq_dec a a0); intros; discriminate.
  Qed.

  Lemma set_union_intro1 :
   forall (a:A) (x y:set), set_In a x -> set_In a (set_union x y).
  Proof.
    simple induction y; simpl in |- *; auto with datatypes.
  Qed.

  Lemma set_union_intro2 :
   forall (a:A) (x y:set), set_In a y -> set_In a (set_union x y).
  Proof.
    simple induction y; simpl in |- *.
    tauto.
    intros; elim H0; auto with datatypes.
  Qed.

  Hint Resolve set_union_intro2 set_union_intro1.

  Lemma set_union_intro :
   forall (a:A) (x y:set),
     set_In a x \/ set_In a y -> set_In a (set_union x y).
  Proof.
    intros; elim H; auto with datatypes.
  Qed.

  Lemma set_union_elim :
   forall (a:A) (x y:set),
     set_In a (set_union x y) -> set_In a x \/ set_In a y.
  Proof.
    simple induction y; simpl in |- *.
    auto with datatypes.
    intros.
    generalize (set_add_elim _ _ _ H0).
    intros [H1| H1].
    auto with datatypes.
    tauto.
  Qed.

  Lemma set_union_emptyL :
   forall (a:A) (x:set), set_In a (set_union empty_set x) -> set_In a x.
    intros a x H; case (set_union_elim _ _ _ H); auto || contradiction.
  Qed.

  Lemma set_union_emptyR :
   forall (a:A) (x:set), set_In a (set_union x empty_set) -> set_In a x.
    intros a x H; case (set_union_elim _ _ _ H); auto || contradiction.
  Qed.

  Lemma set_inter_intro :
   forall (a:A) (x y:set),
     set_In a x -> set_In a y -> set_In a (set_inter x y).
  Proof.
    simple induction x.
    auto with datatypes.
    simpl in |- *; intros a0 l Hrec y [Ha0a| Hal] Hy.
    simpl in |- *; rewrite Ha0a.
    generalize (set_mem_correct1 a y).
    generalize (set_mem_complete1 a y).
    elim (set_mem a y); simpl in |- *; intros.
    auto with datatypes.
    absurd (set_In a y); auto with datatypes.
    elim (set_mem a0 y); [ right; auto with datatypes | auto with datatypes ].
  Qed.

  Lemma set_inter_elim1 :
   forall (a:A) (x y:set), set_In a (set_inter x y) -> set_In a x.
  Proof.
    simple induction x.
    auto with datatypes.
    simpl in |- *; intros a0 l Hrec y.
    generalize (set_mem_correct1 a0 y).
    elim (set_mem a0 y); simpl in |- *; intros.
    elim H0; eauto with datatypes.
    eauto with datatypes.
  Qed.

  Lemma set_inter_elim2 :
   forall (a:A) (x y:set), set_In a (set_inter x y) -> set_In a y.
  Proof.
    simple induction x.
    simpl in |- *; tauto.
    simpl in |- *; intros a0 l Hrec y.
    generalize (set_mem_correct1 a0 y).
    elim (set_mem a0 y); simpl in |- *; intros.
    elim H0;
     [ intro Hr; rewrite <- Hr; eauto with datatypes | eauto with datatypes ].
    eauto with datatypes.
  Qed.

  Hint Resolve set_inter_elim1 set_inter_elim2.

  Lemma set_inter_elim :
   forall (a:A) (x y:set),
     set_In a (set_inter x y) -> set_In a x /\ set_In a y.
  Proof.
    eauto with datatypes.
  Qed.

  Lemma set_diff_intro :
   forall (a:A) (x y:set),
     set_In a x -> ~ set_In a y -> set_In a (set_diff x y).
  Proof.
    simple induction x.
    simpl in |- *; tauto.
    simpl in |- *; intros a0 l Hrec y [Ha0a| Hal] Hay.
    rewrite Ha0a; generalize (set_mem_complete2 _ _ Hay).
    elim (set_mem a y);
     [ intro Habs; discriminate Habs | auto with datatypes ].
    elim (set_mem a0 y); auto with datatypes.
  Qed.

  Lemma set_diff_elim1 :
   forall (a:A) (x y:set), set_In a (set_diff x y) -> set_In a x.
  Proof.
    simple induction x.
    simpl in |- *; tauto.
    simpl in |- *; intros a0 l Hrec y; elim (set_mem a0 y).
    eauto with datatypes.
    intro; generalize (set_add_elim _ _ _ H).
    intros [H1| H2]; eauto with datatypes.
  Qed.

  Lemma set_diff_elim2 :
   forall (a:A) (x y:set), set_In a (set_diff x y) -> ~ set_In a y.
  intros a x y; elim x; simpl in |- *.
  intros; contradiction.
  intros a0 l Hrec.
  apply set_mem_ind2; auto.
  intros H1 H2; case (set_add_elim _ _ _ H2); intros; auto.
  rewrite H; trivial.
  Qed.

  Lemma set_diff_trivial : forall (a:A) (x:set), ~ set_In a (set_diff x x).
  red in |- *; intros a x H.
  apply (set_diff_elim2 _ _ _ H).
  apply (set_diff_elim1 _ _ _ H).
  Qed.

Hint Resolve set_diff_intro set_diff_trivial.

End first_definitions.

Section other_definitions.

  Variables A B : Set.

  Definition set_prod : set A -> set B -> set (A * B) :=
    list_prod (A:=A) (B:=B).

B^A, set of applications from A to B
  Definition set_power : set A -> set B -> set (set (A * B)) :=
    list_power (A:=A) (B:=B).

  Definition set_map : (A -> B) -> set A -> set B := map (A:=A) (B:=B).

  Definition set_fold_left : (B -> A -> B) -> set A -> B -> B :=
    fold_left (A:=B) (B:=A).

  Definition set_fold_right (f:A -> B -> B) (x:set A)
    (b:B) : B := fold_right f b x.


End other_definitions.

Unset Implicit Arguments.