Library Coq.Sets.Multiset

Require Import Permut.

Set Implicit Arguments.

Section multiset_defs.

  Variable A : Set.
  Variable eqA : A -> A -> Prop.
  Hypothesis Aeq_dec : forall x y:A, {eqA x y} + {~ eqA x y}.

  Inductive multiset : Set :=
    Bag : (A -> nat) -> multiset.

  Definition EmptyBag := Bag (fun a:A => 0).
  Definition SingletonBag (a:A) :=
    Bag (fun a':A => match Aeq_dec a a' with
                       | left _ => 1
                       | right _ => 0
                     end).

  Definition multiplicity (m:multiset) (a:A) : nat := let (f) := m in f a.

multiset equality
  Definition meq (m1 m2:multiset) :=
    forall a:A, multiplicity m1 a = multiplicity m2 a.

  Lemma meq_refl : forall x:multiset, meq x x.
  Proof.
    destruct x; unfold meq; reflexivity.
  Qed.

  Lemma meq_trans : forall x y z:multiset, meq x y -> meq y z -> meq x z.
  Proof.
    unfold meq in |- *.
    destruct x; destruct y; destruct z.
    intros; rewrite H; auto.
  Qed.

  Lemma meq_sym : forall x y:multiset, meq x y -> meq y x.
  Proof.
    unfold meq in |- *.
    destruct x; destruct y; auto.
  Qed.

multiset union
  Definition munion (m1 m2:multiset) :=
    Bag (fun a:A => multiplicity m1 a + multiplicity m2 a).

  Lemma munion_empty_left : forall x:multiset, meq x (munion EmptyBag x).
  Proof.
    unfold meq in |- *; unfold munion in |- *; simpl in |- *; auto.
  Qed.

  Lemma munion_empty_right : forall x:multiset, meq x (munion x EmptyBag).
  Proof.
    unfold meq in |- *; unfold munion in |- *; simpl in |- *; auto.
  Qed.

  Require Plus.

  Lemma munion_comm : forall x y:multiset, meq (munion x y) (munion y x).
  Proof.
    unfold meq in |- *; unfold multiplicity in |- *; unfold munion in |- *.
    destruct x; destruct y; auto with arith.
  Qed.

  Lemma munion_ass :
    forall x y z:multiset, meq (munion (munion x y) z) (munion x (munion y z)).
  Proof.
    unfold meq in |- *; unfold munion in |- *; unfold multiplicity in |- *.
    destruct x; destruct y; destruct z; auto with arith.
  Qed.

  Lemma meq_left :
    forall x y z:multiset, meq x y -> meq (munion x z) (munion y z).
  Proof.
    unfold meq in |- *; unfold munion in |- *; unfold multiplicity in |- *.
    destruct x; destruct y; destruct z.
    intros; elim H; auto with arith.
  Qed.

  Lemma meq_right :
    forall x y z:multiset, meq x y -> meq (munion z x) (munion z y).
  Proof.
    unfold meq in |- *; unfold munion in |- *; unfold multiplicity in |- *.
    destruct x; destruct y; destruct z.
    intros; elim H; auto.
  Qed.

Here we should make multiset an abstract datatype, by hiding Bag, munion, multiplicity; all further properties are proved abstractly

  Lemma munion_rotate :
    forall x y z:multiset, meq (munion x (munion y z)) (munion z (munion x y)).
  Proof.
    intros; apply (op_rotate multiset munion meq).
      apply munion_comm.
      apply munion_ass.
      exact meq_trans.
      exact meq_sym.
      trivial.
  Qed.

  Lemma meq_congr :
    forall x y z t:multiset, meq x y -> meq z t -> meq (munion x z) (munion y t).
  Proof.
    intros; apply (cong_congr multiset munion meq); auto using meq_left, meq_right.
      exact meq_trans.
  Qed.

  Lemma munion_perm_left :
    forall x y z:multiset, meq (munion x (munion y z)) (munion y (munion x z)).
  Proof.
    intros; apply (perm_left multiset munion meq); auto using munion_comm, munion_ass, meq_left, meq_right, meq_sym.
      exact meq_trans.
  Qed.

  Lemma multiset_twist1 :
    forall x y z t:multiset,
      meq (munion x (munion (munion y z) t)) (munion (munion y (munion x t)) z).
  Proof.
    intros; apply (twist multiset munion meq); auto using munion_comm, munion_ass, meq_sym, meq_left, meq_right.
    exact meq_trans.
  Qed.

  Lemma multiset_twist2 :
    forall x y z t:multiset,
      meq (munion x (munion (munion y z) t)) (munion (munion y (munion x z)) t).
  Proof.
    intros; apply meq_trans with (munion (munion x (munion y z)) t).
    apply meq_sym; apply munion_ass.
    apply meq_left; apply munion_perm_left.
  Qed.

specific for treesort

  Lemma treesort_twist1 :
    forall x y z t u:multiset,
      meq u (munion y z) ->
      meq (munion x (munion u t)) (munion (munion y (munion x t)) z).
  Proof.
    intros; apply meq_trans with (munion x (munion (munion y z) t)).
    apply meq_right; apply meq_left; trivial.
    apply multiset_twist1.
  Qed.

  Lemma treesort_twist2 :
    forall x y z t u:multiset,
      meq u (munion y z) ->
      meq (munion x (munion u t)) (munion (munion y (munion x z)) t).
  Proof.
    intros; apply meq_trans with (munion x (munion (munion y z) t)).
    apply meq_right; apply meq_left; trivial.
    apply multiset_twist2.
  Qed.

End multiset_defs.

Unset Implicit Arguments.

Hint Unfold meq multiplicity: v62 datatypes.
Hint Resolve munion_empty_right munion_comm munion_ass meq_left meq_right
  munion_empty_left: v62 datatypes.
Hint Immediate meq_sym: v62 datatypes.