Library Coq.Reals.Rseries
Require Import Rbase.
Require Import Rfunctions.
Require Import Classical.
Require Import Compare.
Open Local Scope R_scope.
Implicit Type r : R.
Section sequence.
Variable Un : nat -> R.
Boxed Fixpoint Rmax_N (N:nat) : R :=
match N with
| O => Un 0
| S n => Rmax (Un (S n)) (Rmax_N n)
end.
Definition EUn r : Prop := exists i : nat, r = Un i.
Definition Un_cv (l:R) : Prop :=
forall eps:R,
eps > 0 ->
exists N : nat, (forall n:nat, (n >= N)%nat -> R_dist (Un n) l < eps).
Definition Cauchy_crit : Prop :=
forall eps:R,
eps > 0 ->
exists N : nat,
(forall n m:nat,
(n >= N)%nat -> (m >= N)%nat -> R_dist (Un n) (Un m) < eps).
Definition Un_growing : Prop := forall n:nat, Un n <= Un (S n).
Lemma EUn_noempty : exists r : R, EUn r.
Proof.
unfold EUn in |- *; split with (Un 0); split with 0%nat; trivial.
Qed.
Lemma Un_in_EUn : forall n:nat, EUn (Un n).
Proof.
intro; unfold EUn in |- *; split with n; trivial.
Qed.
Lemma Un_bound_imp :
forall x:R, (forall n:nat, Un n <= x) -> is_upper_bound EUn x.
Proof.
intros; unfold is_upper_bound in |- *; intros; unfold EUn in H0; elim H0;
clear H0; intros; generalize (H x1); intro; rewrite <- H0 in H1;
trivial.
Qed.
Lemma growing_prop :
forall n m:nat, Un_growing -> (n >= m)%nat -> Un n >= Un m.
Proof.
double induction n m; intros.
unfold Rge in |- *; right; trivial.
elimtype False; unfold ge in H1; generalize (le_Sn_O n0); intro; auto.
cut (n0 >= 0)%nat.
generalize H0; intros; unfold Un_growing in H0;
apply
(Rge_trans (Un (S n0)) (Un n0) (Un 0) (Rle_ge (Un n0) (Un (S n0)) (H0 n0))
(H 0%nat H2 H3)).
elim n0; auto.
elim (lt_eq_lt_dec n1 n0); intro y.
elim y; clear y; intro y.
unfold ge in H2; generalize (le_not_lt n0 n1 (le_S_n n0 n1 H2)); intro;
elimtype False; auto.
rewrite y; unfold Rge in |- *; right; trivial.
unfold ge in H0; generalize (H0 (S n0) H1 (lt_le_S n0 n1 y)); intro;
unfold Un_growing in H1;
apply
(Rge_trans (Un (S n1)) (Un n1) (Un (S n0))
(Rle_ge (Un n1) (Un (S n1)) (H1 n1)) H3).
Qed.
classical is needed:
not_all_not_ex
Lemma Un_cv_crit : Un_growing -> bound EUn -> exists l : R, Un_cv l.
Proof.
unfold Un_growing, Un_cv in |- *; intros;
generalize (completeness_weak EUn H0 EUn_noempty);
intro; elim H1; clear H1; intros; split with x; intros;
unfold is_lub in H1; unfold bound in H0; unfold is_upper_bound in H0, H1;
elim H0; clear H0; intros; elim H1; clear H1; intros;
generalize (H3 x0 H0); intro; cut (forall n:nat, Un n <= x);
intro.
cut (exists N : nat, x - eps < Un N).
intro; elim H6; clear H6; intros; split with x1.
intros; unfold R_dist in |- *; apply (Rabs_def1 (Un n - x) eps).
unfold Rgt in H2;
apply (Rle_lt_trans (Un n - x) 0 eps (Rle_minus (Un n) x (H5 n)) H2).
fold Un_growing in H; generalize (growing_prop n x1 H H7); intro;
generalize
(Rlt_le_trans (x - eps) (Un x1) (Un n) H6 (Rge_le (Un n) (Un x1) H8));
intro; generalize (Rplus_lt_compat_l (- x) (x - eps) (Un n) H9);
unfold Rminus in |- *; rewrite <- (Rplus_assoc (- x) x (- eps));
rewrite (Rplus_comm (- x) (Un n)); fold (Un n - x) in |- *;
rewrite Rplus_opp_l; rewrite (let (H1, H2) := Rplus_ne (- eps) in H2);
trivial.
cut (~ (forall N:nat, x - eps >= Un N)).
intro; apply (not_all_not_ex nat (fun N:nat => x - eps < Un N)); red in |- *;
intro; red in H6; elim H6; clear H6; intro;
apply (Rnot_lt_ge (x - eps) (Un N) (H7 N)).
red in |- *; intro; cut (forall N:nat, Un N <= x - eps).
intro; generalize (Un_bound_imp (x - eps) H7); intro;
unfold is_upper_bound in H8; generalize (H3 (x - eps) H8);
intro; generalize (Rle_minus x (x - eps) H9); unfold Rminus in |- *;
rewrite Ropp_plus_distr; rewrite <- Rplus_assoc; rewrite Rplus_opp_r;
rewrite (let (H1, H2) := Rplus_ne (- - eps) in H2);
rewrite Ropp_involutive; intro; unfold Rgt in H2;
generalize (Rgt_not_le eps 0 H2); intro; auto.
intro; elim (H6 N); intro; unfold Rle in |- *.
left; unfold Rgt in H7; assumption.
right; auto.
apply (H1 (Un n) (Un_in_EUn n)).
Qed.
Lemma finite_greater :
forall N:nat, exists M : R, (forall n:nat, (n <= N)%nat -> Un n <= M).
Proof.
intro; induction N as [| N HrecN].
split with (Un 0); intros; rewrite (le_n_O_eq n H);
apply (Req_le (Un n) (Un n) (refl_equal (Un n))).
elim HrecN; clear HrecN; intros; split with (Rmax (Un (S N)) x); intros;
elim (Rmax_Rle (Un (S N)) x (Un n)); intros; clear H1;
inversion H0.
rewrite <- H1; rewrite <- H1 in H2;
apply
(H2 (or_introl (Un n <= x) (Req_le (Un n) (Un n) (refl_equal (Un n))))).
apply (H2 (or_intror (Un n <= Un (S N)) (H n H3))).
Qed.
Lemma cauchy_bound : Cauchy_crit -> bound EUn.
Proof.
unfold Cauchy_crit, bound in |- *; intros; unfold is_upper_bound in |- *;
unfold Rgt in H; elim (H 1 Rlt_0_1); clear H; intros;
generalize (H x); intro; generalize (le_dec x); intro;
elim (finite_greater x); intros; split with (Rmax x0 (Un x + 1));
clear H; intros; unfold EUn in H; elim H; clear H;
intros; elim (H1 x2); clear H1; intro y.
unfold ge in H0; generalize (H0 x2 (le_n x) y); clear H0; intro;
rewrite <- H in H0; unfold R_dist in H0; elim (Rabs_def2 (Un x - x1) 1 H0);
clear H0; intros; elim (Rmax_Rle x0 (Un x + 1) x1);
intros; apply H4; clear H3 H4; right; clear H H0 y;
apply (Rlt_le x1 (Un x + 1)); generalize (Rlt_minus (-1) (Un x - x1) H1);
clear H1; intro; apply (Rminus_lt x1 (Un x + 1));
cut (-1 - (Un x - x1) = x1 - (Un x + 1));
[ intro; rewrite H0 in H; assumption | ring ].
generalize (H2 x2 y); clear H2 H0; intro; rewrite <- H in H0;
elim (Rmax_Rle x0 (Un x + 1) x1); intros; clear H1;
apply H2; left; assumption.
Qed.
End sequence.
Section Isequence.
Variable An : nat -> R.
Definition Pser (x l:R) : Prop := infinit_sum (fun n:nat => An n * x ^ n) l.
End Isequence.
Lemma GP_infinite :
forall x:R, Rabs x < 1 -> Pser (fun n:nat => 1) x (/ (1 - x)).
Proof.
intros; unfold Pser in |- *; unfold infinit_sum in |- *; intros;
elim (Req_dec x 0).
intros; exists 0%nat; intros; rewrite H1; rewrite Rminus_0_r; rewrite Rinv_1;
cut (sum_f_R0 (fun n0:nat => 1 * 0 ^ n0) n = 1).
intros; rewrite H3; rewrite R_dist_eq; auto.
elim n; simpl in |- *.
ring.
intros; rewrite H3; ring.
intro; cut (0 < eps * (Rabs (1 - x) * Rabs (/ x))).
intro; elim (pow_lt_1_zero x H (eps * (Rabs (1 - x) * Rabs (/ x))) H2);
intro N; intros; exists N; intros;
cut
(sum_f_R0 (fun n0:nat => 1 * x ^ n0) n = sum_f_R0 (fun n0:nat => x ^ n0) n).
intros; rewrite H5;
apply
(Rmult_lt_reg_l (Rabs (1 - x))
(R_dist (sum_f_R0 (fun n0:nat => x ^ n0) n) (/ (1 - x))) eps).
apply Rabs_pos_lt.
apply Rminus_eq_contra.
apply Rlt_dichotomy_converse.
right; unfold Rgt in |- *.
apply (Rle_lt_trans x (Rabs x) 1).
apply RRle_abs.
assumption.
unfold R_dist in |- *; rewrite <- Rabs_mult.
rewrite Rmult_minus_distr_l.
cut
((1 - x) * sum_f_R0 (fun n0:nat => x ^ n0) n =
- (sum_f_R0 (fun n0:nat => x ^ n0) n * (x - 1))).
intro; rewrite H6.
rewrite GP_finite.
rewrite Rinv_r.
cut (- (x ^ (n + 1) - 1) - 1 = - x ^ (n + 1)).
intro; rewrite H7.
rewrite Rabs_Ropp; cut ((n + 1)%nat = S n); auto.
intro H8; rewrite H8; simpl in |- *; rewrite Rabs_mult;
apply
(Rlt_le_trans (Rabs x * Rabs (x ^ n))
(Rabs x * (eps * (Rabs (1 - x) * Rabs (/ x)))) (
Rabs (1 - x) * eps)).
apply Rmult_lt_compat_l.
apply Rabs_pos_lt.
assumption.
auto.
cut
(Rabs x * (eps * (Rabs (1 - x) * Rabs (/ x))) =
Rabs x * Rabs (/ x) * (eps * Rabs (1 - x))).
clear H8; intros; rewrite H8; rewrite <- Rabs_mult; rewrite Rinv_r.
rewrite Rabs_R1; cut (1 * (eps * Rabs (1 - x)) = Rabs (1 - x) * eps).
intros; rewrite H9; unfold Rle in |- *; right; reflexivity.
ring.
assumption.
ring.
ring.
ring.
apply Rminus_eq_contra.
apply Rlt_dichotomy_converse.
right; unfold Rgt in |- *.
apply (Rle_lt_trans x (Rabs x) 1).
apply RRle_abs.
assumption.
ring; ring.
elim n; simpl in |- *.
ring.
intros; rewrite H5.
ring.
apply Rmult_lt_0_compat.
auto.
apply Rmult_lt_0_compat.
apply Rabs_pos_lt.
apply Rminus_eq_contra.
apply Rlt_dichotomy_converse.
right; unfold Rgt in |- *.
apply (Rle_lt_trans x (Rabs x) 1).
apply RRle_abs.
assumption.
apply Rabs_pos_lt.
apply Rinv_neq_0_compat.
assumption.
Qed.