Library Coq.QArith.Qreduction
Normalisation functions for rational numbers.
Require Export QArith_base.
Require Import Znumtheory.
First, a function that (tries to) build a positive back from a Z.
Definition Z2P (z : Z) :=
match z with
| Z0 => 1%positive
| Zpos p => p
| Zneg p => p
end.
Lemma Z2P_correct : forall z : Z, (0 < z)%Z -> Zpos (Z2P z) = z.
Proof.
simple destruct z; simpl in |- *; auto; intros; discriminate.
Qed.
Lemma Z2P_correct2 : forall z : Z, 0%Z <> z -> Zpos (Z2P z) = Zabs z.
Proof.
simple destruct z; simpl in |- *; auto; intros; elim H; auto.
Qed.
Simplification of fractions using
Zgcd
.
This version can compute within Coq.
Definition Qred (q:Q) :=
let (q1,q2) := q in
let (r1,r2) := snd (Zggcd q1 ('q2))
in r1#(Z2P r2).
Lemma Qred_correct : forall q, (Qred q) == q.
Proof.
unfold Qred, Qeq; intros (n,d); simpl.
generalize (Zggcd_gcd n ('d)) (Zgcd_is_pos n ('d))
(Zgcd_is_gcd n ('d)) (Zggcd_correct_divisors n ('d)).
destruct (Zggcd n (Zpos d)) as (g,(nn,dd)); simpl.
Open Scope Z_scope.
intuition.
rewrite <- H in H0,H1; clear H.
rewrite H3; rewrite H4.
assert (0 <> g).
intro; subst g; discriminate.
assert (0 < dd).
apply Zmult_gt_0_lt_0_reg_r with g.
omega.
rewrite Zmult_comm.
rewrite <- H4; compute; auto.
rewrite Z2P_correct; auto.
ring.
Close Scope Z_scope.
Qed.
Lemma Qred_complete : forall p q, p==q -> Qred p = Qred q.
Proof.
intros (a,b) (c,d).
unfold Qred, Qeq in *; simpl in *.
Open Scope Z_scope.
generalize (Zggcd_gcd a ('b)) (Zgcd_is_gcd a ('b))
(Zgcd_is_pos a ('b)) (Zggcd_correct_divisors a ('b)).
destruct (Zggcd a (Zpos b)) as (g,(aa,bb)).
generalize (Zggcd_gcd c ('d)) (Zgcd_is_gcd c ('d))
(Zgcd_is_pos c ('d)) (Zggcd_correct_divisors c ('d)).
destruct (Zggcd c (Zpos d)) as (g',(cc,dd)).
simpl.
intro H; rewrite <- H; clear H.
intros Hg'1 Hg'2 (Hg'3,Hg'4).
intro H; rewrite <- H; clear H.
intros Hg1 Hg2 (Hg3,Hg4).
intros.
assert (g <> 0).
intro; subst g; discriminate.
assert (g' <> 0).
intro; subst g'; discriminate.
elim (rel_prime_cross_prod aa bb cc dd).
congruence.
unfold rel_prime in |- *.
constructor.
exists aa; auto with zarith.
exists bb; auto with zarith.
intros.
inversion Hg1.
destruct (H6 (g*x)).
rewrite Hg3.
destruct H2 as (xa,Hxa); exists xa; rewrite Hxa; ring.
rewrite Hg4.
destruct H3 as (xb,Hxb); exists xb; rewrite Hxb; ring.
exists q.
apply Zmult_reg_l with g; auto.
pattern g at 1; rewrite H7; ring.
unfold rel_prime in |- *.
constructor.
exists cc; auto with zarith.
exists dd; auto with zarith.
intros.
inversion Hg'1.
destruct (H6 (g'*x)).
rewrite Hg'3.
destruct H2 as (xc,Hxc); exists xc; rewrite Hxc; ring.
rewrite Hg'4.
destruct H3 as (xd,Hxd); exists xd; rewrite Hxd; ring.
exists q.
apply Zmult_reg_l with g'; auto.
pattern g' at 1; rewrite H7; ring.
assert (0<bb); [|auto with zarith].
apply Zmult_gt_0_lt_0_reg_r with g.
omega.
rewrite Zmult_comm.
rewrite <- Hg4; compute; auto.
assert (0<dd); [|auto with zarith].
apply Zmult_gt_0_lt_0_reg_r with g'.
omega.
rewrite Zmult_comm.
rewrite <- Hg'4; compute; auto.
apply Zmult_reg_l with (g'*g).
intro H2; elim (Zmult_integral _ _ H2); auto.
replace (g'*g*(aa*dd)) with ((g*aa)*(g'*dd)); [|ring].
replace (g'*g*(bb*cc)) with ((g'*cc)*(g*bb)); [|ring].
rewrite <- Hg3; rewrite <- Hg4; rewrite <- Hg'3; rewrite <- Hg'4; auto.
Close Scope Z_scope.
Qed.
Add Morphism Qred : Qred_comp.
Proof.
intros q q' H.
rewrite (Qred_correct q); auto.
rewrite (Qred_correct q'); auto.
Qed.
Definition Qplus' (p q : Q) := Qred (Qplus p q).
Definition Qmult' (p q : Q) := Qred (Qmult p q).
Lemma Qplus'_correct : forall p q : Q, (Qplus' p q)==(Qplus p q).
Proof.
intros; unfold Qplus' in |- *; apply Qred_correct; auto.
Qed.
Lemma Qmult'_correct : forall p q : Q, (Qmult' p q)==(Qmult p q).
Proof.
intros; unfold Qmult' in |- *; apply Qred_correct; auto.
Qed.
Add Morphism Qplus' : Qplus'_comp.
Proof.
intros; unfold Qplus' in |- *.
rewrite H; rewrite H0; auto with qarith.
Qed.
Add Morphism Qmult' : Qmult'_comp.
intros; unfold Qmult' in |- *.
rewrite H; rewrite H0; auto with qarith.
Qed.