Verif_append1List segments
#include <stddef.h> struct list {int head; struct list *tail;}; struct list *append (struct list *x, struct list *y) { struct list *t, *u; if (x==NULL) return y; else { t = x; u = t->tail; while (u!=NULL) { t = u; u = t->tail; } t->tail = y; return x; } }
Require VC.Preface. (* Check for the right version of VST *)
Require Import VST.floyd.proofauto.
Require Import VC.append.
#[export] Instance CompSpecs : compspecs. make_compspecs prog. Defined.
Definition Vprog : varspecs. mk_varspecs prog. Defined.
Require Import VST.floyd.proofauto.
Require Import VC.append.
#[export] Instance CompSpecs : compspecs. make_compspecs prog. Defined.
Definition Vprog : varspecs. mk_varspecs prog. Defined.
Definition t_list := Tstruct _list noattr.
Fixpoint listrep (sigma: list val) (p: val) : mpred :=
match sigma with
| h::hs ⇒
EX y:val,
data_at Tsh t_list (h,y) p × listrep hs y
| nil ⇒
!! (p = nullval) && emp
end.
Arguments listrep sigma p : simpl never.
Fixpoint listrep (sigma: list val) (p: val) : mpred :=
match sigma with
| h::hs ⇒
EX y:val,
data_at Tsh t_list (h,y) p × listrep hs y
| nil ⇒
!! (p = nullval) && emp
end.
Arguments listrep sigma p : simpl never.
Then we can easily describe the functionality of this append.
Definition append_spec :=
DECLARE _append
WITH x: val, y: val, s1: list val, s2: list val
PRE [ tptr t_list , tptr t_list]
PROP()
PARAMS (x; y)
SEP (listrep s1 x; listrep s2 y)
POST [ tptr t_list ]
EX r: val,
PROP()
RETURN(r)
SEP (listrep (s1++s2) r).
Definition Gprog : funspecs := [ append_spec ].
DECLARE _append
WITH x: val, y: val, s1: list val, s2: list val
PRE [ tptr t_list , tptr t_list]
PROP()
PARAMS (x; y)
SEP (listrep s1 x; listrep s2 y)
POST [ tptr t_list ]
EX r: val,
PROP()
RETURN(r)
SEP (listrep (s1++s2) r).
Definition Gprog : funspecs := [ append_spec ].
List segments.
+---+---+ +---+---+ +---+---+ +---+---+ x ==> | | ===> ... ===> | | t ==> | b | u ==> | | ===> ... +---+---+ +---+---+ +---+---+ +---+---+ | <========= s1a =========> | (b) | <==== s1c ====> | | <============================= s1 ==========================> | +---+---+ +---+---+ +---+---+ y ==> | | ===> | | ==> | | ===> ... +---+---+ +---+---+ +---+---+ | <================ s2 =================> |
Fixpoint lseg (contents: list val) (x z: val) : mpred :=
match contents with
| nil ⇒ !! (x = z) && emp
| h::hs ⇒ EX y:val, data_at Tsh t_list (h, y) x × lseg hs y z
end.
Arguments lseg contents x z : simpl never.
match contents with
| nil ⇒ !! (x = z) && emp
| h::hs ⇒ EX y:val, data_at Tsh t_list (h, y) x × lseg hs y z
end.
Arguments lseg contents x z : simpl never.
Lemma singleton_lseg: ∀ (a: val) (x y: val),
data_at Tsh t_list (a, y) x |-- lseg [a] x y.
Proof.
(* FILL IN HERE *) Admitted.
☐
data_at Tsh t_list (a, y) x |-- lseg [a] x y.
Proof.
(* FILL IN HERE *) Admitted.
☐
+---+---+ +---+---+ x ==> | a | y ==> | b | y ====+ +---+---+ +- -+---+ | ^ | | | +=========+We can prove this formally.
Lemma lseg_maybe_loop: ∀ (a b x y: val),
data_at Tsh t_list (a, y) x × data_at Tsh t_list (b, y) y
|-- lseg [a; b] x y.
Proof.
intros.
unfold lseg.
Exists y.
Exists y.
entailer!.
Qed.
data_at Tsh t_list (a, y) x × data_at Tsh t_list (b, y) y
|-- lseg [a; b] x y.
Proof.
intros.
unfold lseg.
Exists y.
Exists y.
entailer!.
Qed.
Is our definition of lseg wrong? The answer is no because a loopy lseg
cannot connect to a nonempty linked list. For instance, we can prove that
data_at Tsh t_list (a, y) x × data_at Tsh t_list (b, y) y × listrep [c] y will lead to a contradication. Here, the first two separating conjuncts build a loopy lseg and the third separating conjunct is a nonempty listrep.
data_at Tsh t_list (a, y) x × data_at Tsh t_list (b, y) y × listrep [c] y will lead to a contradication. Here, the first two separating conjuncts build a loopy lseg and the third separating conjunct is a nonempty listrep.
Lemma loopy_lseg_not_bad: ∀ (a b c x y: val),
data_at Tsh t_list (a, y) x × data_at Tsh t_list (b, y) y × listrep [c] y
|-- FF.
Proof.
intros.
unfold listrep.
Intros u.
subst.
Check (data_at_conflict Tsh t_list (c, nullval)).
sep_apply (data_at_conflict Tsh t_list (c, nullval)).
+ auto.
+ entailer!.
Qed.
data_at Tsh t_list (a, y) x × data_at Tsh t_list (b, y) y × listrep [c] y
|-- FF.
Proof.
intros.
unfold listrep.
Intros u.
subst.
Check (data_at_conflict Tsh t_list (c, nullval)).
sep_apply (data_at_conflict Tsh t_list (c, nullval)).
+ auto.
+ entailer!.
Qed.
Important note! The proof above demonstrates the use of the sep_apply
tactic. Step through that part of the proof to see what sep_apply does.
Now we can prove the following theorems about partial linked
lists and complete linked lists.
Exercise: 1 star, standard (lseg_lseg)
Lemma lseg_lseg: ∀ (s1 s2: list val) (x y z: val),
lseg s1 x y × lseg s2 y z |-- lseg (s1 ++ s2) x z.
Proof.
(* FILL IN HERE *) Admitted.
☐
lseg s1 x y × lseg s2 y z |-- lseg (s1 ++ s2) x z.
Proof.
(* FILL IN HERE *) Admitted.
☐
Lemma lseg_list: ∀ (s1 s2: list val) (x y: val),
lseg s1 x y × listrep s2 y |-- listrep (s1 ++ s2) x.
Proof.
(* FILL IN HERE *) Admitted.
☐
lseg s1 x y × listrep s2 y |-- listrep (s1 ++ s2) x.
Proof.
(* FILL IN HERE *) Admitted.
☐
Proof of the append function
Lemma listrep_local_facts:
∀ sigma p,
listrep sigma p |--
!! (is_pointer_or_null p ∧ (p=nullval ↔ sigma=nil)).
Proof.
(* FILL IN HERE *) Admitted.
#[export] Hint Resolve listrep_local_facts : saturate_local.
Lemma listrep_valid_pointer:
∀ sigma p,
listrep sigma p |-- valid_pointer p.
Proof.
(* FILL IN HERE *) Admitted.
#[export] Hint Resolve listrep_valid_pointer : valid_pointer.
∀ sigma p,
listrep sigma p |--
!! (is_pointer_or_null p ∧ (p=nullval ↔ sigma=nil)).
Proof.
(* FILL IN HERE *) Admitted.
#[export] Hint Resolve listrep_local_facts : saturate_local.
Lemma listrep_valid_pointer:
∀ sigma p,
listrep sigma p |-- valid_pointer p.
Proof.
(* FILL IN HERE *) Admitted.
#[export] Hint Resolve listrep_valid_pointer : valid_pointer.
(End of the material repeated from Verif_reverse.v)
In C programs, we test whether the head pointer of a linked list is null
to determine whether that list is empty or not. Thus, from a separating
conjunct listrep contents x, it is useful to prove contents = nil (or
contents ≠ nil) when knowing that x = nullval (or x ≠ nullval). The
following two lemmas state such correlation. They will be used several
times in the C function append's correctness proof.
Exercise: 1 star, standard (listrep_null)
Lemma listrep_null: ∀ contents x,
x = nullval →
listrep contents x = !! (contents=nil) && emp.
Proof.
x = nullval →
listrep contents x = !! (contents=nil) && emp.
Proof.
Hint: One way to prove P=Q, where P and Q are mpreds,
is to apply pred_ext and then prove P|--Q and Q|--P.
(* FILL IN HERE *) Admitted.
☐
☐
Lemma listrep_nonnull: ∀ contents x,
x ≠ nullval →
listrep contents x =
EX h: val, EX hs: list val, EX y:val,
!! (contents = h :: hs) && data_at Tsh t_list (h, y) x × listrep hs y.
Proof.
x ≠ nullval →
listrep contents x =
EX h: val, EX hs: list val, EX y:val,
!! (contents = h :: hs) && data_at Tsh t_list (h, y) x × listrep hs y.
Proof.
Again, pred_ext will be useful here.
(* FILL IN HERE *) Admitted.
☐
☐
Lemma body_append: semax_body Vprog Gprog f_append append_spec.
Proof.
start_function.
forward_if. (* if (x == NULL) *)
- (* If-then *)
Proof.
start_function.
forward_if. (* if (x == NULL) *)
- (* If-then *)
This if-then branch handles the cases in which x is null. In other
words, s1 should be nil. We can easily derive this by listrep_null.
The rest of the proof in this branch is left as an exercise.
This time, we know that x is not null; thus s1 should
be nonempty.
rewrite (listrep_nonnull _ x) by auto.
Intros h r u.
forward. (* t = x; *)
forward. (* u = t -> tail; *)
Intros h r u.
forward. (* t = x; *)
forward. (* u = t -> tail; *)
After symbolically executing two assignment commands, we arrive
at the while loop. As mentioned above, we can verify it using
the following loop invariant.
forward_while
( EX s1a: list val, EX b: val, EX s1c: list val, EX t: val, EX u: val,
PROP (s1 = s1a ++ b :: s1c)
LOCAL (temp _x x; temp _t t; temp _u u; temp _y y)
SEP (lseg s1a x t;
data_at Tsh t_list (b, u) t;
listrep s1c u;
listrep s2 y))%assert.
+ (* current assertion implies loop invariant *)
Exists (@nil val) h r x u.
subst s1. entailer!. unfold lseg; entailer!.
+ (* loop test is safe to execute *)
entailer!.
+ (* loop body preserves invariant *)
( EX s1a: list val, EX b: val, EX s1c: list val, EX t: val, EX u: val,
PROP (s1 = s1a ++ b :: s1c)
LOCAL (temp _x x; temp _t t; temp _u u; temp _y y)
SEP (lseg s1a x t;
data_at Tsh t_list (b, u) t;
listrep s1c u;
listrep s2 y))%assert.
+ (* current assertion implies loop invariant *)
Exists (@nil val) h r x u.
subst s1. entailer!. unfold lseg; entailer!.
+ (* loop test is safe to execute *)
entailer!.
+ (* loop body preserves invariant *)
We know u is not null from the fact that the loop condition
is true. Thus we can represent s1c in the form of (c :: s1d).
clear h r u H0; rename u0 into u.
rewrite (listrep_nonnull _ u) by auto.
Intros c s1d z.
forward. (* t = u; *)
forward. (* u = t -> tail; *)
rewrite (listrep_nonnull _ u) by auto.
Intros c s1d z.
forward. (* t = u; *)
forward. (* u = t -> tail; *)
In the end of the loop body, we need to re-establish the
loop invariant. At this point, the memory layout can be
illustrated by the following diagram.
new t new u | | | | +---+---+ +---+---+ +---+---+ +---+---+ x ==> ... ===> | | t ==> | b | u ==> | c | z ==> | | ===> ... +---+---+ +---+---+ +---+---+ +---+---+ | <===== s1a =====> | (b) (c) | <==== s1d ====> | | <========== new s1a ========> | (new b) | <== new s1c ==> | +---+---+ +---+---+ +---+---+ y ==> | | ===> | | ==> | | ===> ... +---+---+ +---+---+ +---+---+ | <================ s2 =================> |
As usual, we try entailer! to solve this proof goal. This time,
entailer! does not solve it directly. Instead, two simplified proof goals
are left. Their proofs are left for the reader, using app_assoc,
singleton_lseg and lseg_lseg.
entailer!.
× (* FILL IN HERE *) admit.
× (* FILL IN HERE *) admit.
+ (* after the loop *)
× (* FILL IN HERE *) admit.
× (* FILL IN HERE *) admit.
+ (* after the loop *)
After exiting the loop, the loop condition must be false, i.e.
u is the null pointer. Thus s1c = nil and s1 = s1a ++ [b].
The rest of the proof is standard. Hint, singleton_lseg,
lseg_lseg and/or lseg_list may be useful.
(* FILL IN HERE *) admit.
(* FILL IN HERE *) Admitted.
☐
(* FILL IN HERE *) Admitted.
☐
Additional exercises: more proofs about list segments
Exercise: 1 star, standard: (lseg2listrep)
Lemma lseg2listrep: ∀ s x,
lseg s x nullval |-- listrep s x.
Proof.
(* FILL IN HERE *) Admitted.
☐
lseg s x nullval |-- listrep s x.
Proof.
(* FILL IN HERE *) Admitted.
☐
Lemma listrep2lseg: ∀ s x,
listrep s x |-- lseg s x nullval.
Proof.
(* FILL IN HERE *) Admitted.
☐
listrep s x |-- lseg s x nullval.
Proof.
(* FILL IN HERE *) Admitted.
☐
Corollary lseg_listrep_equiv: ∀ s x,
lseg s x nullval = listrep s x.
Proof.
intros.
apply pred_ext.
+ apply lseg2listrep.
+ apply listrep2lseg.
Qed.
lseg s x nullval = listrep s x.
Proof.
intros.
apply pred_ext.
+ apply lseg2listrep.
+ apply listrep2lseg.
Qed.
Lemma lseg_lseg_inv: ∀ s1 s2 x z,
lseg (s1 ++ s2) x z |-- EX y: val, lseg s1 x y × lseg s2 y z.
Proof.
(* FILL IN HERE *) Admitted.
☐
lseg (s1 ++ s2) x z |-- EX y: val, lseg s1 x y × lseg s2 y z.
Proof.
(* FILL IN HERE *) Admitted.
☐
Lemma loopy_lseg_no_connection: ∀ s1 s2 x y z,
s1 ≠ nil →
s2 ≠ nil →
x = y →
lseg s1 x y × lseg s2 y z |-- FF.
Proof.
(* FILL IN HERE *) Admitted.
☐
s1 ≠ nil →
s2 ≠ nil →
x = y →
lseg s1 x y × lseg s2 y z |-- FF.
Proof.
(* FILL IN HERE *) Admitted.
☐
Additional exercises: loop-free list segments
Fixpoint nt_lseg (contents: list val) (x z: val) : mpred :=
match contents with
| nil ⇒ !! (x = z) && emp
| h::hs ⇒ EX y:val, !! (x ≠ z)
&& data_at Tsh t_list (h, y) x × nt_lseg hs y z
end.
Arguments nt_lseg contents x z : simpl never.
match contents with
| nil ⇒ !! (x = z) && emp
| h::hs ⇒ EX y:val, !! (x ≠ z)
&& data_at Tsh t_list (h, y) x × nt_lseg hs y z
end.
Arguments nt_lseg contents x z : simpl never.
Here, "nt" means no-touch.
The difference between nt_lseg and lseg is the extra proposition
x ≠ z in the nonempty situation. This extra clause in nt_lseg
prevents loop structures.
The proof theories of nt_lseg and lseg are a bit different as
well. The following diagram shows that the counterpart of lseg_lseg
is not valid!
(nt_lseg s1 x y × nt_lseg s2 y z) cannot ensure that the structure is loop free. Specifically, the address z may be used in (nt_lseg s1 x y). In other words,
nt_lseg s1 x y × nt_lseg s2 y z ⊢/- nt_lseg (s1 ++ s2) x z
For nt_lseg, the following proof rules are useful.
+---+---+ +---+---+ +---+---+ +---+---+ x ==> | a | u ==> | b | y ==> | c | v ==> | d | u ===+ +---+---+ +- -+---+ +---+---+ +---+---+ | ^ | | | +================================+In this example, both [a; b] and [c; d] are stored in loop-free partial linked lists but it is not true for their concatenation. In general, if (nt_lseg s1 x y) and (nt_lseg s2 y z) describe two loop-free partial linked lists, the assertion
(nt_lseg s1 x y × nt_lseg s2 y z) cannot ensure that the structure is loop free. Specifically, the address z may be used in (nt_lseg s1 x y). In other words,
nt_lseg s1 x y × nt_lseg s2 y z ⊢/- nt_lseg (s1 ++ s2) x z
Exercise: 2 stars, standard, optional (nt_lseg)
Lemma singleton_nt_lseg: ∀ (contents: list val) (a x y: val),
data_at Tsh t_list (a, y) x × listrep contents y |--
nt_lseg [a] x y × listrep contents y.
Proof.
(* FILL IN HERE *) Admitted.
☐
data_at Tsh t_list (a, y) x × listrep contents y |--
nt_lseg [a] x y × listrep contents y.
Proof.
(* FILL IN HERE *) Admitted.
☐
Lemma singleton_nt_lseg': ∀ (a b x y z: val),
data_at Tsh t_list (a, y) x × data_at Tsh t_list (b, z) y |--
nt_lseg [a] x y × data_at Tsh t_list (b, z) y.
Proof.
(* FILL IN HERE *) Admitted.
☐
data_at Tsh t_list (a, y) x × data_at Tsh t_list (b, z) y |--
nt_lseg [a] x y × data_at Tsh t_list (b, z) y.
Proof.
(* FILL IN HERE *) Admitted.
☐
Lemma nt_lseg_nt_lseg: ∀ (s1 s2: list val) (a x y z u: val),
nt_lseg s1 x y × nt_lseg s2 y z × data_at Tsh t_list (a, u) z |--
nt_lseg (s1 ++ s2) x z × data_at Tsh t_list (a, u) z.
Proof.
nt_lseg s1 x y × nt_lseg s2 y z × data_at Tsh t_list (a, u) z |--
nt_lseg (s1 ++ s2) x z × data_at Tsh t_list (a, u) z.
Proof.
Hint: This lemma illustrates the most classic case where aggressive
cancel can turn a provable goal into an unprovable goal. For that reason,
you may need to use entailer rather than entailer! at one point.
(* FILL IN HERE *) Admitted.
☐
☐
Lemma nt_lseg_list: ∀ (s1 s2: list val) (x y: val),
nt_lseg s1 x y × listrep s2 y |-- listrep (s1 ++ s2) x.
Proof.
(* FILL IN HERE *) Admitted.
☐
nt_lseg s1 x y × listrep s2 y |-- listrep (s1 ++ s2) x.
Proof.
(* FILL IN HERE *) Admitted.
☐
Exercise: 3 stars, standard, optional (body_append_alter1)
Lemma body_append_alter1: semax_body Vprog Gprog f_append append_spec.
Proof.
start_function.
forward_if. (* if (x == NULL) *)
- (* If-then *)
rewrite (listrep_null _ x) by auto.
(* FILL IN HERE *) admit.
- (* If-else *)
rewrite (listrep_nonnull _ x) by auto.
Intros h r u.
forward. (* t = x; *)
forward. (* u = t -> tail; *)
Proof.
start_function.
forward_if. (* if (x == NULL) *)
- (* If-then *)
rewrite (listrep_null _ x) by auto.
(* FILL IN HERE *) admit.
- (* If-else *)
rewrite (listrep_nonnull _ x) by auto.
Intros h r u.
forward. (* t = x; *)
forward. (* u = t -> tail; *)
Now use forward_while to verify this while loop. Remember,
forward_while will generate four proof goals: current precondition
implies loop invariant; loop test is safe to execute; loop body preserves
invariant; and the correctness of after-loop commands.
(* FILL IN HERE *) Admitted.
☐
☐
(* 2024-01-02 15:44 *)