Recursive Deep Learning for Modeling Compositional Meaning in Language
Date and Time
Tuesday, March 11, 2014 - 4:30pm to 5:30pm
Location
Computer Science Small Auditorium (Room 105)
Type
CS Department Colloquium Series
Speaker
Host
Sebastian Seung
Besides the state-of-the-art performance, the models capture interesting phenomena in language such as compositionality. For instance, people easily see that the "with" phrase in "eating spaghetti with a spoon" specifies a way of eating whereas in "eating spaghetti with some pesto" it specifies the dish. I show that my model solves these prepositional attachment problems well thanks to its distributed representations. In sentiment analysis, a new tensor-based recursive model learns different types of high level negation and how they can change the meaning of longer phrases with many positive words. They also learn that when contrastive conjunctions such as "but" are used the sentiment of the phrases following them usually dominates.
Richard Socher is a PhD student at Stanford working with Chris Manning and Andrew Ng. His research interests are machine learning for NLP and vision. He is interested in developing new deep learning models that learn useful features, capture compositional structure in multiple modalities and perform well across different tasks. He was awarded the 2011 Yahoo! Key Scientific Challenges Award, the Distinguished Application Paper Award at ICML 2011, a Microsoft Research PhD Fellowship in 2012 and a 2013 "Magic Grant" from the Brown Institute for Media Innovation.