CITP Seminar: Insights into Predictability of Life Outcomes: A Data-Driven Approach
In the first part of the talk, we discuss the study design and describe the system we built to run such a large-scale exploration. This system is both general and has easy to use interfaces to run a wide range of studies. In the second part, we present a meta-learning inspired method to derive key insights related to the problem of predictability by A) Comparing the relative predictive power of different classes of models B) Using descriptive statistics that best predict the predictability of ML pipelines. Predictability of life outcomes is a multi-faceted problem. We conclude the talk by briefly discussing some of our other studies that are currently in the pipeline.
Bio: Pranay Anchuri is a data scientist at CITP. His research interests include graph mining, large-scale data analytics and blockchain technologies. Pranay graduated with a Ph.D. in computer science from Rensselaer Polytechnic Institute in 2015. During graduate studies, he worked at various labs including IBM, Yahoo, and QCRI. His thesis focused on developing algorithms for efficiently extracting frequent patterns noisy networks.
After graduation, Pranay started as a research scientist at NEC Labs, Princeton working on log modeling and analytics. Most recently, he worked as a research scientist at Axoni, NY where his research focused on problems related to the implementation of high-performance permissioned blockchains.
To request accommodations for a disability please contact Jean Butcher, butcher@princeton.edu, at least one week prior to the event.
This seminar will be recorded.
This seminar is co-sponsored by CITP and the Center for Statistics and Machine Learning.