TypecheckingA Typechecker for STLC
Set Warnings "-notation-overridden,-parsing,-deprecated-hint-without-locality".
Set Warnings "-non-recursive".
From Coq Require Import Bool.Bool.
From PLF Require Import Maps.
From PLF Require Import Smallstep.
From PLF Require Import Stlc.
From PLF Require MoreStlc.
Module STLCTypes.
Export STLC.
Set Warnings "-non-recursive".
From Coq Require Import Bool.Bool.
From PLF Require Import Maps.
From PLF Require Import Smallstep.
From PLF Require Import Stlc.
From PLF Require MoreStlc.
Module STLCTypes.
Export STLC.
Fixpoint eqb_ty (T1 T2:ty) : bool :=
match T1,T2 with
| <{ Bool }> , <{ Bool }> ⇒
true
| <{ T11→T12 }>, <{ T21→T22 }> ⇒
andb (eqb_ty T11 T21) (eqb_ty T12 T22)
| _,_ ⇒
false
end.
match T1,T2 with
| <{ Bool }> , <{ Bool }> ⇒
true
| <{ T11→T12 }>, <{ T21→T22 }> ⇒
andb (eqb_ty T11 T21) (eqb_ty T12 T22)
| _,_ ⇒
false
end.
... and we need to establish the usual two-way connection between
the boolean result returned by eqb_ty and the logical
proposition that its inputs are equal.
Lemma eqb_ty_refl : ∀ T,
eqb_ty T T = true.
Lemma eqb_ty__eq : ∀ T1 T2,
eqb_ty T1 T2 = true → T1 = T2.
eqb_ty T T = true.
Proof.
intros T. induction T; simpl.
reflexivity.
rewrite IHT1. rewrite IHT2. reflexivity. Qed.
intros T. induction T; simpl.
reflexivity.
rewrite IHT1. rewrite IHT2. reflexivity. Qed.
Lemma eqb_ty__eq : ∀ T1 T2,
eqb_ty T1 T2 = true → T1 = T2.
Proof with auto.
intros T1. induction T1; intros T2 Hbeq; destruct T2; inversion Hbeq.
- (* T1=Bool *)
reflexivity.
- (* T1 = T1_1->T1_2 *)
rewrite andb_true_iff in H0. inversion H0 as [Hbeq1 Hbeq2].
apply IHT1_1 in Hbeq1. apply IHT1_2 in Hbeq2. subst... Qed.
End STLCTypes.intros T1. induction T1; intros T2 Hbeq; destruct T2; inversion Hbeq.
- (* T1=Bool *)
reflexivity.
- (* T1 = T1_1->T1_2 *)
rewrite andb_true_iff in H0. inversion H0 as [Hbeq1 Hbeq2].
apply IHT1_1 in Hbeq1. apply IHT1_2 in Hbeq2. subst... Qed.
The Typechecker
Module FirstTry.
Import STLCTypes.
Fixpoint type_check (Gamma : context) (t : tm) : option ty :=
match t with
| tm_var x ⇒
Gamma x
| <{\x:T2, t1}> ⇒
match type_check (x ⊢> T2 ; Gamma) t1 with
| Some T1 ⇒ Some <{T2→T1}>
| _ ⇒ None
end
| <{t1 t2}> ⇒
match type_check Gamma t1, type_check Gamma t2 with
| Some <{T11→T12}>, Some T2 ⇒
if eqb_ty T11 T2 then Some T12 else None
| _,_ ⇒ None
end
| <{true}> ⇒
Some <{Bool}>
| <{false}> ⇒
Some <{Bool}>
| <{if guard then t else f}> ⇒
match type_check Gamma guard with
| Some <{Bool}> ⇒
match type_check Gamma t, type_check Gamma f with
| Some T1, Some T2 ⇒
if eqb_ty T1 T2 then Some T1 else None
| _,_ ⇒ None
end
| _ ⇒ None
end
end.
End FirstTry.
Import STLCTypes.
Fixpoint type_check (Gamma : context) (t : tm) : option ty :=
match t with
| tm_var x ⇒
Gamma x
| <{\x:T2, t1}> ⇒
match type_check (x ⊢> T2 ; Gamma) t1 with
| Some T1 ⇒ Some <{T2→T1}>
| _ ⇒ None
end
| <{t1 t2}> ⇒
match type_check Gamma t1, type_check Gamma t2 with
| Some <{T11→T12}>, Some T2 ⇒
if eqb_ty T11 T2 then Some T12 else None
| _,_ ⇒ None
end
| <{true}> ⇒
Some <{Bool}>
| <{false}> ⇒
Some <{Bool}>
| <{if guard then t else f}> ⇒
match type_check Gamma guard with
| Some <{Bool}> ⇒
match type_check Gamma t, type_check Gamma f with
| Some T1, Some T2 ⇒
if eqb_ty T1 T2 then Some T1 else None
| _,_ ⇒ None
end
| _ ⇒ None
end
end.
End FirstTry.
Digression: Improving the Notation
Notation " x <- e1 ;; e2" := (match e1 with
| Some x ⇒ e2
| None ⇒ None
end)
(right associativity, at level 60).
| Some x ⇒ e2
| None ⇒ None
end)
(right associativity, at level 60).
Second, we define return and fail as synonyms for Some and
None:
Notation " 'return' e "
:= (Some e) (at level 60).
Notation " 'fail' "
:= None.
Module STLCChecker.
Import STLCTypes.
:= (Some e) (at level 60).
Notation " 'fail' "
:= None.
Module STLCChecker.
Import STLCTypes.
Now we can write the same type-checking function in a more
imperative-looking style using these notations.
Fixpoint type_check (Gamma : context) (t : tm) : option ty :=
match t with
| tm_var x ⇒
match Gamma x with
| Some T ⇒ return T
| None ⇒ fail
end
| <{\x:T2, t1}> ⇒
T1 <- type_check (x ⊢> T2 ; Gamma) t1 ;;
return <{T2→T1}>
| <{t1 t2}> ⇒
T1 <- type_check Gamma t1 ;;
T2 <- type_check Gamma t2 ;;
match T1 with
| <{T11→T12}> ⇒
if eqb_ty T11 T2 then return T12 else fail
| _ ⇒ fail
end
| <{true}> ⇒
return <{ Bool }>
| <{false}> ⇒
return <{ Bool }>
| <{if guard then t1 else t2}> ⇒
Tguard <- type_check Gamma guard ;;
T1 <- type_check Gamma t1 ;;
T2 <- type_check Gamma t2 ;;
match Tguard with
| <{ Bool }> ⇒
if eqb_ty T1 T2 then return T1 else fail
| _ ⇒ fail
end
end.
match t with
| tm_var x ⇒
match Gamma x with
| Some T ⇒ return T
| None ⇒ fail
end
| <{\x:T2, t1}> ⇒
T1 <- type_check (x ⊢> T2 ; Gamma) t1 ;;
return <{T2→T1}>
| <{t1 t2}> ⇒
T1 <- type_check Gamma t1 ;;
T2 <- type_check Gamma t2 ;;
match T1 with
| <{T11→T12}> ⇒
if eqb_ty T11 T2 then return T12 else fail
| _ ⇒ fail
end
| <{true}> ⇒
return <{ Bool }>
| <{false}> ⇒
return <{ Bool }>
| <{if guard then t1 else t2}> ⇒
Tguard <- type_check Gamma guard ;;
T1 <- type_check Gamma t1 ;;
T2 <- type_check Gamma t2 ;;
match Tguard with
| <{ Bool }> ⇒
if eqb_ty T1 T2 then return T1 else fail
| _ ⇒ fail
end
end.
Properties
Theorem type_checking_sound : ∀ Gamma t T,
type_check Gamma t = Some T → has_type Gamma t T.
Theorem type_checking_complete : ∀ Gamma t T,
has_type Gamma t T → type_check Gamma t = Some T.
End STLCChecker.
type_check Gamma t = Some T → has_type Gamma t T.
Proof with eauto.
intros Gamma t. generalize dependent Gamma.
induction t; intros Gamma T Htc; inversion Htc.
- (* var *) rename s into x. destruct (Gamma x) eqn:H.
rename t into T'. inversion H0. subst. eauto. solve_by_invert.
- (* app *)
remember (type_check Gamma t1) as TO1.
destruct TO1 as [T1|]; try solve_by_invert;
destruct T1 as [|T11 T12]; try solve_by_invert;
remember (type_check Gamma t2) as TO2;
destruct TO2 as [T2|]; try solve_by_invert.
destruct (eqb_ty T11 T2) eqn: Heqb.
apply eqb_ty__eq in Heqb.
inversion H0; subst...
inversion H0.
- (* abs *)
rename s into x, t into T1.
remember (x ⊢> T1 ; Gamma) as G'.
remember (type_check G' t0) as TO2.
destruct TO2; try solve_by_invert.
inversion H0; subst...
- (* tru *) eauto.
- (* fls *) eauto.
- (* test *)
remember (type_check Gamma t1) as TOc.
remember (type_check Gamma t2) as TO1.
remember (type_check Gamma t3) as TO2.
destruct TOc as [Tc|]; try solve_by_invert.
destruct Tc; try solve_by_invert;
destruct TO1 as [T1|]; try solve_by_invert;
destruct TO2 as [T2|]; try solve_by_invert.
destruct (eqb_ty T1 T2) eqn:Heqb;
try solve_by_invert.
apply eqb_ty__eq in Heqb.
inversion H0. subst. subst...
Qed.
intros Gamma t. generalize dependent Gamma.
induction t; intros Gamma T Htc; inversion Htc.
- (* var *) rename s into x. destruct (Gamma x) eqn:H.
rename t into T'. inversion H0. subst. eauto. solve_by_invert.
- (* app *)
remember (type_check Gamma t1) as TO1.
destruct TO1 as [T1|]; try solve_by_invert;
destruct T1 as [|T11 T12]; try solve_by_invert;
remember (type_check Gamma t2) as TO2;
destruct TO2 as [T2|]; try solve_by_invert.
destruct (eqb_ty T11 T2) eqn: Heqb.
apply eqb_ty__eq in Heqb.
inversion H0; subst...
inversion H0.
- (* abs *)
rename s into x, t into T1.
remember (x ⊢> T1 ; Gamma) as G'.
remember (type_check G' t0) as TO2.
destruct TO2; try solve_by_invert.
inversion H0; subst...
- (* tru *) eauto.
- (* fls *) eauto.
- (* test *)
remember (type_check Gamma t1) as TOc.
remember (type_check Gamma t2) as TO1.
remember (type_check Gamma t3) as TO2.
destruct TOc as [Tc|]; try solve_by_invert.
destruct Tc; try solve_by_invert;
destruct TO1 as [T1|]; try solve_by_invert;
destruct TO2 as [T2|]; try solve_by_invert.
destruct (eqb_ty T1 T2) eqn:Heqb;
try solve_by_invert.
apply eqb_ty__eq in Heqb.
inversion H0. subst. subst...
Qed.
Theorem type_checking_complete : ∀ Gamma t T,
has_type Gamma t T → type_check Gamma t = Some T.
Proof with auto.
intros Gamma t T Hty.
induction Hty; simpl.
- (* T_Var *) destruct (Gamma _) eqn:H0; assumption.
- (* T_Abs *) rewrite IHHty...
- (* T_App *)
rewrite IHHty1. rewrite IHHty2.
rewrite (eqb_ty_refl T2)...
- (* T_True *) eauto.
- (* T_False *) eauto.
- (* T_If *) rewrite IHHty1. rewrite IHHty2.
rewrite IHHty3. rewrite (eqb_ty_refl T1)...
Qed.
intros Gamma t T Hty.
induction Hty; simpl.
- (* T_Var *) destruct (Gamma _) eqn:H0; assumption.
- (* T_Abs *) rewrite IHHty...
- (* T_App *)
rewrite IHHty1. rewrite IHHty2.
rewrite (eqb_ty_refl T2)...
- (* T_True *) eauto.
- (* T_False *) eauto.
- (* T_If *) rewrite IHHty1. rewrite IHHty2.
rewrite IHHty3. rewrite (eqb_ty_refl T1)...
Qed.
End STLCChecker.
Exercises
Module TypecheckerExtensions.
Import MoreStlc.
Import STLCExtended.
Fixpoint eqb_ty (T1 T2 : ty) : bool :=
match T1,T2 with
| <{{Nat}}>, <{{Nat}}> ⇒
true
| <{{Unit}}>, <{{Unit}}> ⇒
true
| <{{T11 → T12}}>, <{{T21 → T22}}> ⇒
andb (eqb_ty T11 T21) (eqb_ty T12 T22)
| <{{T11 × T12}}>, <{{T21 × T22}}> ⇒
andb (eqb_ty T11 T21) (eqb_ty T12 T22)
| <{{T11 + T12}}>, <{{T21 + T22}}> ⇒
andb (eqb_ty T11 T21) (eqb_ty T12 T22)
| <{{List T11}}>, <{{List T21}}> ⇒
eqb_ty T11 T21
| _,_ ⇒
false
end.
Lemma eqb_ty_refl : ∀ T,
eqb_ty T T = true.
Proof.
intros T.
induction T; simpl; auto;
rewrite IHT1; rewrite IHT2; reflexivity. Qed.
Lemma eqb_ty__eq : ∀ T1 T2,
eqb_ty T1 T2 = true → T1 = T2.
Proof.
intros T1.
induction T1; intros T2 Hbeq; destruct T2; inversion Hbeq;
try reflexivity;
try (rewrite andb_true_iff in H0; inversion H0 as [Hbeq1 Hbeq2];
apply IHT1_1 in Hbeq1; apply IHT1_2 in Hbeq2; subst; auto);
try (apply IHT1 in Hbeq; subst; auto).
Qed.
Import MoreStlc.
Import STLCExtended.
Fixpoint eqb_ty (T1 T2 : ty) : bool :=
match T1,T2 with
| <{{Nat}}>, <{{Nat}}> ⇒
true
| <{{Unit}}>, <{{Unit}}> ⇒
true
| <{{T11 → T12}}>, <{{T21 → T22}}> ⇒
andb (eqb_ty T11 T21) (eqb_ty T12 T22)
| <{{T11 × T12}}>, <{{T21 × T22}}> ⇒
andb (eqb_ty T11 T21) (eqb_ty T12 T22)
| <{{T11 + T12}}>, <{{T21 + T22}}> ⇒
andb (eqb_ty T11 T21) (eqb_ty T12 T22)
| <{{List T11}}>, <{{List T21}}> ⇒
eqb_ty T11 T21
| _,_ ⇒
false
end.
Lemma eqb_ty_refl : ∀ T,
eqb_ty T T = true.
Proof.
intros T.
induction T; simpl; auto;
rewrite IHT1; rewrite IHT2; reflexivity. Qed.
Lemma eqb_ty__eq : ∀ T1 T2,
eqb_ty T1 T2 = true → T1 = T2.
Proof.
intros T1.
induction T1; intros T2 Hbeq; destruct T2; inversion Hbeq;
try reflexivity;
try (rewrite andb_true_iff in H0; inversion H0 as [Hbeq1 Hbeq2];
apply IHT1_1 in Hbeq1; apply IHT1_2 in Hbeq2; subst; auto);
try (apply IHT1 in Hbeq; subst; auto).
Qed.
Fixpoint type_check (Gamma : context) (t : tm) : option ty :=
match t with
| tm_var x ⇒
match Gamma x with
| Some T ⇒ return T
| None ⇒ fail
end
| <{ \ x1 : T1, t2 }> ⇒
T2 <- type_check (x1 ⊢> T1 ; Gamma) t2 ;;
return <{{T1 → T2}}>
| <{ t1 t2 }> ⇒
T1 <- type_check Gamma t1 ;;
T2 <- type_check Gamma t2 ;;
match T1 with
| <{{T11 → T12}}> ⇒
if eqb_ty T11 T2 then return T12 else fail
| _ ⇒ fail
end
| tm_const _ ⇒
return <{{Nat}}>
| <{ succ t1 }> ⇒
T1 <- type_check Gamma t1 ;;
match T1 with
| <{{Nat}}> ⇒ return <{{Nat}}>
| _ ⇒ fail
end
| <{ pred t1 }> ⇒
T1 <- type_check Gamma t1 ;;
match T1 with
| <{{Nat}}> ⇒ return <{{Nat}}>
| _ ⇒ fail
end
| <{ t1 × t2 }> ⇒
T1 <- type_check Gamma t1 ;;
T2 <- type_check Gamma t2 ;;
match T1, T2 with
| <{{Nat}}>, <{{Nat}}> ⇒ return <{{Nat}}>
| _,_ ⇒ fail
end
| <{ if0 guard then t else f }> ⇒
Tguard <- type_check Gamma guard ;;
T1 <- type_check Gamma t ;;
T2 <- type_check Gamma f ;;
match Tguard with
| <{{Nat}}> ⇒ if eqb_ty T1 T2 then return T1 else fail
| _ ⇒ fail
end
(* Complete the following cases. *)
(* sums *)
(* FILL IN HERE *)
(* lists (the tm_lcase is given for free) *)
(* FILL IN HERE *)
| <{ case t0 of | nil ⇒ t1 | x21 :: x22 ⇒ t2 }> ⇒
T0 <- type_check Gamma t0 ;;
match T0 with
| <{{List T}}> ⇒
T1 <- type_check Gamma t1 ;;
T2 <- type_check (x21 ⊢> T ; x22 ⊢> <{{List T}}> ; Gamma) t2 ;;
if eqb_ty T1 T2 then return T1 else fail
| _ ⇒ fail
end
(* unit *)
(* FILL IN HERE *)
(* pairs *)
(* FILL IN HERE *)
(* let *)
(* FILL IN HERE *)
(* fix *)
(* FILL IN HERE *)
| _ ⇒ None (* ... and delete this line when you complete the exercise. *)
end.
(* Do not modify the following line: *)
Definition manual_grade_for_type_check_defn : option (nat×string) := None.
☐
match t with
| tm_var x ⇒
match Gamma x with
| Some T ⇒ return T
| None ⇒ fail
end
| <{ \ x1 : T1, t2 }> ⇒
T2 <- type_check (x1 ⊢> T1 ; Gamma) t2 ;;
return <{{T1 → T2}}>
| <{ t1 t2 }> ⇒
T1 <- type_check Gamma t1 ;;
T2 <- type_check Gamma t2 ;;
match T1 with
| <{{T11 → T12}}> ⇒
if eqb_ty T11 T2 then return T12 else fail
| _ ⇒ fail
end
| tm_const _ ⇒
return <{{Nat}}>
| <{ succ t1 }> ⇒
T1 <- type_check Gamma t1 ;;
match T1 with
| <{{Nat}}> ⇒ return <{{Nat}}>
| _ ⇒ fail
end
| <{ pred t1 }> ⇒
T1 <- type_check Gamma t1 ;;
match T1 with
| <{{Nat}}> ⇒ return <{{Nat}}>
| _ ⇒ fail
end
| <{ t1 × t2 }> ⇒
T1 <- type_check Gamma t1 ;;
T2 <- type_check Gamma t2 ;;
match T1, T2 with
| <{{Nat}}>, <{{Nat}}> ⇒ return <{{Nat}}>
| _,_ ⇒ fail
end
| <{ if0 guard then t else f }> ⇒
Tguard <- type_check Gamma guard ;;
T1 <- type_check Gamma t ;;
T2 <- type_check Gamma f ;;
match Tguard with
| <{{Nat}}> ⇒ if eqb_ty T1 T2 then return T1 else fail
| _ ⇒ fail
end
(* Complete the following cases. *)
(* sums *)
(* FILL IN HERE *)
(* lists (the tm_lcase is given for free) *)
(* FILL IN HERE *)
| <{ case t0 of | nil ⇒ t1 | x21 :: x22 ⇒ t2 }> ⇒
T0 <- type_check Gamma t0 ;;
match T0 with
| <{{List T}}> ⇒
T1 <- type_check Gamma t1 ;;
T2 <- type_check (x21 ⊢> T ; x22 ⊢> <{{List T}}> ; Gamma) t2 ;;
if eqb_ty T1 T2 then return T1 else fail
| _ ⇒ fail
end
(* unit *)
(* FILL IN HERE *)
(* pairs *)
(* FILL IN HERE *)
(* let *)
(* FILL IN HERE *)
(* fix *)
(* FILL IN HERE *)
| _ ⇒ None (* ... and delete this line when you complete the exercise. *)
end.
(* Do not modify the following line: *)
Definition manual_grade_for_type_check_defn : option (nat×string) := None.
☐
Ltac invert_typecheck Gamma t T :=
remember (type_check Gamma t) as TO;
destruct TO as [T|];
try solve_by_invert; try (inversion H0; eauto); try (subst; eauto).
Ltac analyze T T1 T2 :=
destruct T as [T1 T2| |T1 T2|T1| |T1 T2]; try solve_by_invert.
Ltac fully_invert_typecheck Gamma t T T1 T2 :=
let TX := fresh T in
remember (type_check Gamma t) as TO;
destruct TO as [TX|]; try solve_by_invert;
destruct TX as [T1 T2| |T1 T2|T1| |T1 T2];
try solve_by_invert; try (inversion H0; eauto); try (subst; eauto).
Ltac case_equality S T :=
destruct (eqb_ty S T) eqn: Heqb;
inversion H0; apply eqb_ty__eq in Heqb; subst; subst; eauto.
remember (type_check Gamma t) as TO;
destruct TO as [T|];
try solve_by_invert; try (inversion H0; eauto); try (subst; eauto).
Ltac analyze T T1 T2 :=
destruct T as [T1 T2| |T1 T2|T1| |T1 T2]; try solve_by_invert.
Ltac fully_invert_typecheck Gamma t T T1 T2 :=
let TX := fresh T in
remember (type_check Gamma t) as TO;
destruct TO as [TX|]; try solve_by_invert;
destruct TX as [T1 T2| |T1 T2|T1| |T1 T2];
try solve_by_invert; try (inversion H0; eauto); try (subst; eauto).
Ltac case_equality S T :=
destruct (eqb_ty S T) eqn: Heqb;
inversion H0; apply eqb_ty__eq in Heqb; subst; subst; eauto.
Theorem type_checking_sound : ∀ Gamma t T,
type_check Gamma t = Some T →
has_type Gamma t T.
Proof with eauto.
intros Gamma t. generalize dependent Gamma.
induction t; intros Gamma T Htc; inversion Htc.
- (* var *) rename s into x. destruct (Gamma x) eqn:H.
rename t into T'. inversion H0. subst. eauto. solve_by_invert.
- (* app *)
invert_typecheck Gamma t1 T1.
invert_typecheck Gamma t2 T2.
analyze T1 T11 T12.
case_equality T11 T2.
- (* abs *)
rename s into x, t into T1.
remember (x ⊢> T1 ; Gamma) as Gamma'.
invert_typecheck Gamma' t0 T0.
- (* const *) eauto.
- (* scc *)
rename t into t1.
fully_invert_typecheck Gamma t1 T1 T11 T12.
- (* prd *)
rename t into t1.
fully_invert_typecheck Gamma t1 T1 T11 T12.
- (* mlt *)
invert_typecheck Gamma t1 T1.
invert_typecheck Gamma t2 T2.
analyze T1 T11 T12; analyze T2 T21 T22.
inversion H0. subst. eauto.
- (* test0 *)
invert_typecheck Gamma t1 T1.
invert_typecheck Gamma t2 T2.
invert_typecheck Gamma t3 T3.
destruct T1; try solve_by_invert.
case_equality T2 T3.
(* Complete the following cases. *)
(* sums *)
(* FILL IN HERE *)
(* lists (the tm_lcase is given for free) *)
(* FILL IN HERE *)
- (* tlcase *)
rename s into x31, s0 into x32.
fully_invert_typecheck Gamma t1 T1 T11 T12.
invert_typecheck Gamma t2 T2.
remember (x31 ⊢> T11 ; x32 ⊢> <{{List T11}}> ; Gamma) as Gamma'2.
invert_typecheck Gamma'2 t3 T3.
case_equality T2 T3.
(* unit *)
(* FILL IN HERE *)
(* pairs *)
(* FILL IN HERE *)
(* let *)
(* FILL IN HERE *)
(* fix *)
(* FILL IN HERE *)
(* FILL IN HERE *) Admitted.
☐
type_check Gamma t = Some T →
has_type Gamma t T.
Proof with eauto.
intros Gamma t. generalize dependent Gamma.
induction t; intros Gamma T Htc; inversion Htc.
- (* var *) rename s into x. destruct (Gamma x) eqn:H.
rename t into T'. inversion H0. subst. eauto. solve_by_invert.
- (* app *)
invert_typecheck Gamma t1 T1.
invert_typecheck Gamma t2 T2.
analyze T1 T11 T12.
case_equality T11 T2.
- (* abs *)
rename s into x, t into T1.
remember (x ⊢> T1 ; Gamma) as Gamma'.
invert_typecheck Gamma' t0 T0.
- (* const *) eauto.
- (* scc *)
rename t into t1.
fully_invert_typecheck Gamma t1 T1 T11 T12.
- (* prd *)
rename t into t1.
fully_invert_typecheck Gamma t1 T1 T11 T12.
- (* mlt *)
invert_typecheck Gamma t1 T1.
invert_typecheck Gamma t2 T2.
analyze T1 T11 T12; analyze T2 T21 T22.
inversion H0. subst. eauto.
- (* test0 *)
invert_typecheck Gamma t1 T1.
invert_typecheck Gamma t2 T2.
invert_typecheck Gamma t3 T3.
destruct T1; try solve_by_invert.
case_equality T2 T3.
(* Complete the following cases. *)
(* sums *)
(* FILL IN HERE *)
(* lists (the tm_lcase is given for free) *)
(* FILL IN HERE *)
- (* tlcase *)
rename s into x31, s0 into x32.
fully_invert_typecheck Gamma t1 T1 T11 T12.
invert_typecheck Gamma t2 T2.
remember (x31 ⊢> T11 ; x32 ⊢> <{{List T11}}> ; Gamma) as Gamma'2.
invert_typecheck Gamma'2 t3 T3.
case_equality T2 T3.
(* unit *)
(* FILL IN HERE *)
(* pairs *)
(* FILL IN HERE *)
(* let *)
(* FILL IN HERE *)
(* fix *)
(* FILL IN HERE *)
(* FILL IN HERE *) Admitted.
☐
Theorem type_checking_complete : ∀ Gamma t T,
has_type Gamma t T →
type_check Gamma t = Some T.
Proof.
intros Gamma t T Hty.
induction Hty; simpl;
try (rewrite IHHty);
try (rewrite IHHty1);
try (rewrite IHHty2);
try (rewrite IHHty3);
try (rewrite (eqb_ty_refl T0));
try (rewrite (eqb_ty_refl T1));
try (rewrite (eqb_ty_refl T2));
try (rewrite (eqb_ty_refl T3));
eauto.
- destruct (Gamma _); [assumption| solve_by_invert].
(* The above proof script suffices for the reference solution. *)
(* FILL IN HERE *) Admitted.
☐
has_type Gamma t T →
type_check Gamma t = Some T.
Proof.
intros Gamma t T Hty.
induction Hty; simpl;
try (rewrite IHHty);
try (rewrite IHHty1);
try (rewrite IHHty2);
try (rewrite IHHty3);
try (rewrite (eqb_ty_refl T0));
try (rewrite (eqb_ty_refl T1));
try (rewrite (eqb_ty_refl T2));
try (rewrite (eqb_ty_refl T3));
eauto.
- destruct (Gamma _); [assumption| solve_by_invert].
(* The above proof script suffices for the reference solution. *)
(* FILL IN HERE *) Admitted.
☐
Above, we showed how to write a typechecking function and prove it
sound and complete for the typing relation. Do the same for the
operational semantics -- i.e., write a function stepf of type
tm → option tm and prove that it is sound and complete with
respect to step from chapter MoreStlc.
(* We must first also redefine value as a function. *)
Fixpoint valuef (t : tm) : bool :=
match t with
| tm_var _ ⇒ false
| <{ \_:_, _ }> ⇒ true
| <{ _ _ }> ⇒ false
| tm_const _ ⇒ true
| <{ succ _ }> | <{ pred _ }> | <{ _ × _ }> | <{ if0 _ then _ else _ }> ⇒ false
(* Complete the following cases *)
(* sums *)
(* FILL IN HERE *)
| _ ⇒ false (* ... and delete this line when you complete the exercise. *)
end.
(* Do not modify the following line: *)
Definition manual_grade_for_valuef_defn : option (nat×string) := None.
☐
Fixpoint valuef (t : tm) : bool :=
match t with
| tm_var _ ⇒ false
| <{ \_:_, _ }> ⇒ true
| <{ _ _ }> ⇒ false
| tm_const _ ⇒ true
| <{ succ _ }> | <{ pred _ }> | <{ _ × _ }> | <{ if0 _ then _ else _ }> ⇒ false
(* Complete the following cases *)
(* sums *)
(* FILL IN HERE *)
| _ ⇒ false (* ... and delete this line when you complete the exercise. *)
end.
(* Do not modify the following line: *)
Definition manual_grade_for_valuef_defn : option (nat×string) := None.
☐
(* A little helper to concisely check some boolean properties
(in this case, that some term is a value, with valuef). *)
Definition assert (b : bool) (a : option tm) : option tm :=
if b then a else None.
(in this case, that some term is a value, with valuef). *)
Definition assert (b : bool) (a : option tm) : option tm :=
if b then a else None.
(* Operational semantics as a Coq function. *)
Fixpoint stepf (t : tm) : option tm :=
match t with
(* pure STLC *)
| tm_var x ⇒ None (* We only define step for closed terms *)
| <{ \x1:T1, t2 }> ⇒ None (* Abstraction is a value *)
| <{ t1 t2 }> ⇒
match stepf t1, stepf t2, t1 with
| Some t1', _, _ ⇒ Some <{ t1' t2 }>
(* otherwise t1 is a normal form *)
| None, Some t2', _ ⇒ assert (valuef t1) (Some <{ t1 t2' }>)
(* otherwise t1, t2 are normal forms *)
| None, None, <{ \x:T, t11 }> ⇒
assert (valuef t2) (Some <{ [x:=t2]t11 }>)
| _, _, _ ⇒ None
end
(* numbers *)
| tm_const _ ⇒ None (* number value *)
| <{ succ t1 }> ⇒
match stepf t1, t1 with
| Some t1', _ ⇒ Some <{ succ t1' }>
(* otherwise t1 is a normal form *)
| None, tm_const n ⇒ Some (tm_const (S n))
| None, _ ⇒ None
end
| <{ pred t1 }> ⇒
match stepf t1, t1 with
| Some t1', _ ⇒ Some <{ pred t1' }>
(* otherwise t1 is a normal form *)
| None, tm_const n ⇒ Some (tm_const (n - 1))
| _, _ ⇒ None
end
| <{ t1 × t2 }> ⇒
match stepf t1, stepf t2, t1, t2 with
| Some t1', _, _, _ ⇒ Some <{ t1' × t2 }>
(* otherwise t1 is a normal form *)
| None, Some t2', _, _ ⇒
assert (valuef t1) (Some <{ t1 × t2' }>)
| None, None, tm_const n1, tm_const n2 ⇒ Some (tm_const (mult n1 n2))
| _, _, _, _ ⇒ None
end
| <{ if0 guard then t else f }> ⇒
match stepf guard, guard with
| Some guard', _ ⇒ Some <{ if0 guard' then t else f }>
(* otherwise guard is a normal form *)
| None, tm_const 0 ⇒ Some t
| None, tm_const (S _) ⇒ Some f
| _, _ ⇒ None
end
(* Complete the following cases. *)
(* sums *)
(* FILL IN HERE *)
(* lists (the tm_lcase is given for free) *)
(* FILL IN HERE *)
| <{ case t0 of | nil ⇒ t1 | x21 :: x22 ⇒ t2 }> ⇒
match stepf t0, t0 with
| Some t0', _ ⇒ Some <{ case t0' of | nil ⇒ t1 | x21 :: x22 ⇒ t2 }>
(* otherwise t0 is a normal form *)
| None, <{ nil _ }> ⇒ Some t1
| None, <{ vh :: vt }> ⇒
assert (valuef vh) (assert (valuef vt)
(Some <{ [x22:=vt]([x21:=vh]t2) }> ))
| None, _ ⇒ None
end
(* unit *)
(* FILL IN HERE *)
(* pairs *)
(* FILL IN HERE *)
(* let *)
(* FILL IN HERE *)
(* fix *)
(* FILL IN HERE *)
| _ ⇒ None (* ... and delete this line when you complete the exercise. *)
end.
(* Do not modify the following line: *)
Definition manual_grade_for_stepf_defn : option (nat×string) := None.
☐
Fixpoint stepf (t : tm) : option tm :=
match t with
(* pure STLC *)
| tm_var x ⇒ None (* We only define step for closed terms *)
| <{ \x1:T1, t2 }> ⇒ None (* Abstraction is a value *)
| <{ t1 t2 }> ⇒
match stepf t1, stepf t2, t1 with
| Some t1', _, _ ⇒ Some <{ t1' t2 }>
(* otherwise t1 is a normal form *)
| None, Some t2', _ ⇒ assert (valuef t1) (Some <{ t1 t2' }>)
(* otherwise t1, t2 are normal forms *)
| None, None, <{ \x:T, t11 }> ⇒
assert (valuef t2) (Some <{ [x:=t2]t11 }>)
| _, _, _ ⇒ None
end
(* numbers *)
| tm_const _ ⇒ None (* number value *)
| <{ succ t1 }> ⇒
match stepf t1, t1 with
| Some t1', _ ⇒ Some <{ succ t1' }>
(* otherwise t1 is a normal form *)
| None, tm_const n ⇒ Some (tm_const (S n))
| None, _ ⇒ None
end
| <{ pred t1 }> ⇒
match stepf t1, t1 with
| Some t1', _ ⇒ Some <{ pred t1' }>
(* otherwise t1 is a normal form *)
| None, tm_const n ⇒ Some (tm_const (n - 1))
| _, _ ⇒ None
end
| <{ t1 × t2 }> ⇒
match stepf t1, stepf t2, t1, t2 with
| Some t1', _, _, _ ⇒ Some <{ t1' × t2 }>
(* otherwise t1 is a normal form *)
| None, Some t2', _, _ ⇒
assert (valuef t1) (Some <{ t1 × t2' }>)
| None, None, tm_const n1, tm_const n2 ⇒ Some (tm_const (mult n1 n2))
| _, _, _, _ ⇒ None
end
| <{ if0 guard then t else f }> ⇒
match stepf guard, guard with
| Some guard', _ ⇒ Some <{ if0 guard' then t else f }>
(* otherwise guard is a normal form *)
| None, tm_const 0 ⇒ Some t
| None, tm_const (S _) ⇒ Some f
| _, _ ⇒ None
end
(* Complete the following cases. *)
(* sums *)
(* FILL IN HERE *)
(* lists (the tm_lcase is given for free) *)
(* FILL IN HERE *)
| <{ case t0 of | nil ⇒ t1 | x21 :: x22 ⇒ t2 }> ⇒
match stepf t0, t0 with
| Some t0', _ ⇒ Some <{ case t0' of | nil ⇒ t1 | x21 :: x22 ⇒ t2 }>
(* otherwise t0 is a normal form *)
| None, <{ nil _ }> ⇒ Some t1
| None, <{ vh :: vt }> ⇒
assert (valuef vh) (assert (valuef vt)
(Some <{ [x22:=vt]([x21:=vh]t2) }> ))
| None, _ ⇒ None
end
(* unit *)
(* FILL IN HERE *)
(* pairs *)
(* FILL IN HERE *)
(* let *)
(* FILL IN HERE *)
(* fix *)
(* FILL IN HERE *)
| _ ⇒ None (* ... and delete this line when you complete the exercise. *)
end.
(* Do not modify the following line: *)
Definition manual_grade_for_stepf_defn : option (nat×string) := None.
☐
(* To prove that stepf is equivalent to step, we start with
a couple of intermediate lemmas. *)
(* We show that valuef is sound and complete with respect to value. *)
a couple of intermediate lemmas. *)
(* We show that valuef is sound and complete with respect to value. *)
(* valuef is sound with respect to value *)
Lemma sound_valuef : ∀ t,
valuef t = true → value t.
Proof.
(* FILL IN HERE *) Admitted.
☐
Lemma sound_valuef : ∀ t,
valuef t = true → value t.
Proof.
(* FILL IN HERE *) Admitted.
☐
(* valuef is complete with respect to value.
This proof by induction is quite easily done by simplification. *)
Lemma complete_valuef : ∀ t,
value t → valuef t = true.
Proof.
(* FILL IN HERE *) Admitted.
☐
This proof by induction is quite easily done by simplification. *)
Lemma complete_valuef : ∀ t,
value t → valuef t = true.
Proof.
(* FILL IN HERE *) Admitted.
☐
(* Soundness of stepf:
Theorem sound_stepf : forall t t',
stepf t = Some t' -> t --> t'.
By induction on t. We automate the handling of each case with
the following tactic auto_stepf. *)
Tactic Notation "auto_stepf" ident(H) :=
(* Step 1: In every case, the left hand side of the hypothesis
H : stepf t = Some t' simplifies to some combination of
match u with ... end, assert u (...) (for some u).
The tactic auto_stepf then destructs u as required.
We repeat this step as long as it is possible. *)
repeat
match type of H with
| (match ?u with _ ⇒ _ end = _) ⇒
let e := fresh "e" in
destruct u eqn:e
| (assert ?u _ = _) ⇒
(* In this case, u is always of the form valuef t0
for some term t0. If valuef t0 = true, we immediately
deduce value t0 via sound_valuef. If valuef t0 = false,
then that equation simplifies to None = Some t', which is
contradictory and can be eliminated with discriminate. *)
let e := fresh "e" in
destruct u eqn:e;
simpl in H; (* assert true (...) must be simplified
explicitly. *)
[apply sound_valuef in e | discriminate]
end;
(* Step 2: We are now left with either H : None = Some t' or
Some (...) = Some t', and the rest of the proof is a
straightforward combination of the induction hypotheses. *)
(discriminate + (inversion H; subst; auto)).
Theorem sound_stepf : forall t t',
stepf t = Some t' -> t --> t'.
By induction on t. We automate the handling of each case with
the following tactic auto_stepf. *)
Tactic Notation "auto_stepf" ident(H) :=
(* Step 1: In every case, the left hand side of the hypothesis
H : stepf t = Some t' simplifies to some combination of
match u with ... end, assert u (...) (for some u).
The tactic auto_stepf then destructs u as required.
We repeat this step as long as it is possible. *)
repeat
match type of H with
| (match ?u with _ ⇒ _ end = _) ⇒
let e := fresh "e" in
destruct u eqn:e
| (assert ?u _ = _) ⇒
(* In this case, u is always of the form valuef t0
for some term t0. If valuef t0 = true, we immediately
deduce value t0 via sound_valuef. If valuef t0 = false,
then that equation simplifies to None = Some t', which is
contradictory and can be eliminated with discriminate. *)
let e := fresh "e" in
destruct u eqn:e;
simpl in H; (* assert true (...) must be simplified
explicitly. *)
[apply sound_valuef in e | discriminate]
end;
(* Step 2: We are now left with either H : None = Some t' or
Some (...) = Some t', and the rest of the proof is a
straightforward combination of the induction hypotheses. *)
(discriminate + (inversion H; subst; auto)).
(* Soundness of stepf. *)
Theorem sound_stepf : ∀ t t',
stepf t = Some t' → t --> t'.
Proof.
intros t.
induction t; simpl; intros t' H;
auto_stepf H.
(* The above proof script suffices for the reference solution. *)
(* FILL IN HERE *) Admitted.
☐
Theorem sound_stepf : ∀ t t',
stepf t = Some t' → t --> t'.
Proof.
intros t.
induction t; simpl; intros t' H;
auto_stepf H.
(* The above proof script suffices for the reference solution. *)
(* FILL IN HERE *) Admitted.
☐
(* Now for completeness, another lemma will be useful:
every value is a normal form for stepf. *)
Lemma value_stepf_nf : ∀ t,
value t → stepf t = None.
Proof.
(* FILL IN HERE *) Admitted.
☐
every value is a normal form for stepf. *)
Lemma value_stepf_nf : ∀ t,
value t → stepf t = None.
Proof.
(* FILL IN HERE *) Admitted.
☐
(* Completeness of stepf. *)
Theorem complete_stepf : ∀ t t',
t --> t' → stepf t = Some t'.
Proof.
(* FILL IN HERE *) Admitted.
☐
Theorem complete_stepf : ∀ t t',
t --> t' → stepf t = Some t'.
Proof.
(* FILL IN HERE *) Admitted.
☐
Exercise: 5 stars, standard, optional (stlc_impl)
Using the Imp parser described in the ImpParser chapter of Logical Foundations as a guide, build a parser for extended STLC programs. Combine it with the typechecking and stepping functions from the above exercises to yield a complete typechecker and interpreter for this language.
(* 2024-01-02 15:05 *)