RecordsAdding Records to STLC
Set Warnings "-notation-overridden,-parsing,-deprecated-hint-without-locality".
From Coq Require Import Strings.String.
From PLF Require Import Maps.
From PLF Require Import Smallstep.
From PLF Require Import Stlc.
From Coq Require Import Strings.String.
From PLF Require Import Maps.
From PLF Require Import Smallstep.
From PLF Require Import Stlc.
Adding Records
t ::= Terms:
| {i=t, ..., i=t} record
| t.i projection
| ...
v ::= Values:
| {i=v, ..., i=v} record value
| ...
T ::= Types:
| {i:T, ..., i:T} record type
| ... Reduction:
tn ==> tn' | (ST_Rcd) |
{i1=v1, ..., im=vm, in=tn, ...} ==> {i1=v1, ..., im=vm, in=tn', ...} |
t1 ==> t1' | (ST_Proj1) |
t1.i ==> t1'.i |
(ST_ProjRcd) | |
{..., i=vi, ...}.i ==> vi |
Gamma |-- t1 : T1 ... Gamma |-- tn : Tn | (T_Rcd) |
Gamma |-- {i1=t1, ..., in=tn} : {i1:T1, ..., in:Tn} |
Gamma |-- t0 : {..., i:Ti, ...} | (T_Proj) |
Gamma |-- t0.i : Ti |
Syntax and Operational Semantics
Module FirstTry.
Definition alist (X : Type) := list (string × X).
Inductive ty : Type :=
| Base : string → ty
| Arrow : ty → ty → ty
| TRcd : (alist ty) → ty.
Definition alist (X : Type) := list (string × X).
Inductive ty : Type :=
| Base : string → ty
| Arrow : ty → ty → ty
| TRcd : (alist ty) → ty.
Unfortunately, we encounter here a limitation in Coq: this type
does not automatically give us the induction principle we expect:
the induction hypothesis in the TRcd case doesn't give us
any information about the ty elements of the list, making it
useless for the proofs we want to do.
(* Check ty_ind.
====>
ty_ind :
forall P : ty -> Prop,
(forall i : id, P (Base i)) ->
(forall t : ty, P t -> forall t0 : ty, P t0
-> P (Arrow t t0)) ->
(forall a : alist ty, P (TRcd a)) -> (* ??? *)
forall t : ty, P t
*)
End FirstTry.
====>
ty_ind :
forall P : ty -> Prop,
(forall i : id, P (Base i)) ->
(forall t : ty, P t -> forall t0 : ty, P t0
-> P (Arrow t t0)) ->
(forall a : alist ty, P (TRcd a)) -> (* ??? *)
forall t : ty, P t
*)
End FirstTry.
It is possible to get a better induction principle out of Coq, but
the details of how this is done are not very pretty, and the
principle we obtain is not as intuitive to use as the ones Coq
generates automatically for simple Inductive definitions.
Fortunately, there is a different way of formalizing records that
is, in some ways, even simpler and more natural: instead of using
the standard Coq list type, we can essentially incorporate its
constructors ("nil" and "cons") in the syntax of our types.
Inductive ty : Type :=
| Ty_Base : string → ty
| Ty_Arrow : ty → ty → ty
| Ty_RNil : ty
| Ty_RCons : string → ty → ty → ty.
| Ty_Base : string → ty
| Ty_Arrow : ty → ty → ty
| Ty_RNil : ty
| Ty_RCons : string → ty → ty → ty.
Similarly, at the level of terms, we have constructors trnil,
for the empty record, and rcons, which adds a single field to
the front of a list of fields.
Inductive tm : Type :=
| tm_var : string → tm
| tm_app : tm → tm → tm
| tm_abs : string → ty → tm → tm
(* records *)
| tm_rproj : tm → string → tm
| tm_rnil : tm
| tm_rcons : string → tm → tm → tm.
Declare Custom Entry stlc_ty.
Notation "<{ e }>" := e (e custom stlc at level 99).
Notation "<{{ e }}>" := e (e custom stlc_ty at level 99).
Notation "( x )" := x (in custom stlc, x at level 99).
Notation "( x )" := x (in custom stlc_ty, x at level 99).
Notation "x" := x (in custom stlc at level 0, x constr at level 0).
Notation "x" := x (in custom stlc_ty at level 0, x constr at level 0).
Notation "S -> T" := (Ty_Arrow S T) (in custom stlc_ty at level 50, right associativity).
Notation "x y" := (tm_app x y) (in custom stlc at level 1, left associativity).
Notation "\ x : t , y" :=
(tm_abs x t y) (in custom stlc at level 90, x at level 99,
t custom stlc_ty at level 99,
y custom stlc at level 99,
left associativity).
Coercion tm_var : string >-> tm.
Notation "{ x }" := x (in custom stlc at level 1, x constr).
Notation "'Base' x" := (Ty_Base x) (in custom stlc_ty at level 0).
Notation " l ':' t1 '::' t2" := (Ty_RCons l t1 t2) (in custom stlc_ty at level 3, right associativity).
Notation " l := e1 '::' e2" := (tm_rcons l e1 e2) (in custom stlc at level 3, right associativity).
Notation "'nil'" := (Ty_RNil) (in custom stlc_ty).
Notation "'nil'" := (tm_rnil) (in custom stlc).
Notation "o --> l" := (tm_rproj o l) (in custom stlc at level 0).
| tm_var : string → tm
| tm_app : tm → tm → tm
| tm_abs : string → ty → tm → tm
(* records *)
| tm_rproj : tm → string → tm
| tm_rnil : tm
| tm_rcons : string → tm → tm → tm.
Declare Custom Entry stlc_ty.
Notation "<{ e }>" := e (e custom stlc at level 99).
Notation "<{{ e }}>" := e (e custom stlc_ty at level 99).
Notation "( x )" := x (in custom stlc, x at level 99).
Notation "( x )" := x (in custom stlc_ty, x at level 99).
Notation "x" := x (in custom stlc at level 0, x constr at level 0).
Notation "x" := x (in custom stlc_ty at level 0, x constr at level 0).
Notation "S -> T" := (Ty_Arrow S T) (in custom stlc_ty at level 50, right associativity).
Notation "x y" := (tm_app x y) (in custom stlc at level 1, left associativity).
Notation "\ x : t , y" :=
(tm_abs x t y) (in custom stlc at level 90, x at level 99,
t custom stlc_ty at level 99,
y custom stlc at level 99,
left associativity).
Coercion tm_var : string >-> tm.
Notation "{ x }" := x (in custom stlc at level 1, x constr).
Notation "'Base' x" := (Ty_Base x) (in custom stlc_ty at level 0).
Notation " l ':' t1 '::' t2" := (Ty_RCons l t1 t2) (in custom stlc_ty at level 3, right associativity).
Notation " l := e1 '::' e2" := (tm_rcons l e1 e2) (in custom stlc at level 3, right associativity).
Notation "'nil'" := (Ty_RNil) (in custom stlc_ty).
Notation "'nil'" := (tm_rnil) (in custom stlc).
Notation "o --> l" := (tm_rproj o l) (in custom stlc at level 0).
Some examples...
Open Scope string_scope.
Notation a := "a".
Notation f := "f".
Notation g := "g".
Notation l := "l".
Notation A := <{{ Base "A" }}>.
Notation B := <{{ Base "B" }}>.
Notation k := "k".
Notation i1 := "i1".
Notation i2 := "i2".
Notation a := "a".
Notation f := "f".
Notation g := "g".
Notation l := "l".
Notation A := <{{ Base "A" }}>.
Notation B := <{{ Base "B" }}>.
Notation k := "k".
Notation i1 := "i1".
Notation i2 := "i2".
{ i1:A }
(* Check (RCons i1 A RNil). *)
{ i1:A→B, i2:A }
(* Check (RCons i1 (Arrow A B)
(RCons i2 A RNil)). *)
(RCons i2 A RNil)). *)
Well-Formedness
where the "tail" of a record type is not actually a record type!
We'll structure our typing judgement so that no ill-formed types
like weird_type are ever assigned to terms. To support this, we
define predicates record_ty and record_tm, which identify
record types and terms, and well_formed_ty which rules out the
ill-formed types.
First, a type is a record type if it is built with just RNil
and RCons at the outermost level.
Inductive record_ty : ty → Prop :=
| RTnil :
record_ty <{{ nil }}>
| RTcons : ∀ i T1 T2,
record_ty <{{ i : T1 :: T2 }}>.
| RTnil :
record_ty <{{ nil }}>
| RTcons : ∀ i T1 T2,
record_ty <{{ i : T1 :: T2 }}>.
With this, we can define well-formed types.
Inductive well_formed_ty : ty → Prop :=
| wfBase : ∀ (i : string),
well_formed_ty <{{ Base i }}>
| wfArrow : ∀ T1 T2,
well_formed_ty T1 →
well_formed_ty T2 →
well_formed_ty <{{ T1 → T2 }}>
| wfRNil :
well_formed_ty <{{ nil }}>
| wfRCons : ∀ i T1 T2,
well_formed_ty T1 →
well_formed_ty T2 →
record_ty T2 →
well_formed_ty <{{ i : T1 :: T2 }}>.
Hint Constructors record_ty well_formed_ty : core.
| wfBase : ∀ (i : string),
well_formed_ty <{{ Base i }}>
| wfArrow : ∀ T1 T2,
well_formed_ty T1 →
well_formed_ty T2 →
well_formed_ty <{{ T1 → T2 }}>
| wfRNil :
well_formed_ty <{{ nil }}>
| wfRCons : ∀ i T1 T2,
well_formed_ty T1 →
well_formed_ty T2 →
record_ty T2 →
well_formed_ty <{{ i : T1 :: T2 }}>.
Hint Constructors record_ty well_formed_ty : core.
Note that record_ty is not recursive -- it just checks the
outermost constructor. The well_formed_ty property, on the
other hand, verifies that the whole type is well formed in the
sense that the tail of every record (the second argument to
RCons) is a record.
Of course, we should also be concerned about ill-formed terms, not
just types; but typechecking can rule those out without the help
of an extra well_formed_tm definition because it already
examines the structure of terms. All we need is an analog of
record_ty saying that a term is a record term if it is built
with trnil and rcons.
Inductive record_tm : tm → Prop :=
| rtnil :
record_tm <{ nil }>
| rtcons : ∀ i t1 t2,
record_tm <{ i := t1 :: t2 }>.
Hint Constructors record_tm : core.
| rtnil :
record_tm <{ nil }>
| rtcons : ∀ i t1 t2,
record_tm <{ i := t1 :: t2 }>.
Hint Constructors record_tm : core.
Reserved Notation "'[' x ':=' s ']' t" (in custom stlc at level 20, x constr).
Fixpoint subst (x : string) (s : tm) (t : tm) : tm :=
match t with
| tm_var y ⇒
if String.eqb x y then s else t
| <{\y:T, t1}> ⇒
if String.eqb x y then t else <{\y:T, [x:=s] t1}>
| <{t1 t2}> ⇒
<{([x:=s] t1) ([x:=s] t2)}>
| <{ t1 --> i }> ⇒
<{ ( [x := s] t1) --> i }>
| <{ nil }> ⇒
<{ nil }>
| <{ i := t1 :: tr }> ⇒
<{ i := [x := s] t1 :: ( [x := s] tr) }>
end
where "'[' x ':=' s ']' t" := (subst x s t) (in custom stlc).
Fixpoint subst (x : string) (s : tm) (t : tm) : tm :=
match t with
| tm_var y ⇒
if String.eqb x y then s else t
| <{\y:T, t1}> ⇒
if String.eqb x y then t else <{\y:T, [x:=s] t1}>
| <{t1 t2}> ⇒
<{([x:=s] t1) ([x:=s] t2)}>
| <{ t1 --> i }> ⇒
<{ ( [x := s] t1) --> i }>
| <{ nil }> ⇒
<{ nil }>
| <{ i := t1 :: tr }> ⇒
<{ i := [x := s] t1 :: ( [x := s] tr) }>
end
where "'[' x ':=' s ']' t" := (subst x s t) (in custom stlc).
Inductive value : tm → Prop :=
| v_abs : ∀ x T2 t1,
value <{ \ x : T2, t1 }>
| v_rnil : value <{ nil }>
| v_rcons : ∀ i v1 vr,
value v1 →
value vr →
value <{ i := v1 :: vr }>.
Hint Constructors value : core.
| v_abs : ∀ x T2 t1,
value <{ \ x : T2, t1 }>
| v_rnil : value <{ nil }>
| v_rcons : ∀ i v1 vr,
value v1 →
value vr →
value <{ i := v1 :: vr }>.
Hint Constructors value : core.
To define reduction, we'll need a utility function for extracting
one field from record term:
Fixpoint tlookup (i:string) (tr:tm) : option tm :=
match tr with
| <{ i' := t :: tr'}> ⇒ if String.eqb i i' then Some t else tlookup i tr'
| _ ⇒ None
end.
match tr with
| <{ i' := t :: tr'}> ⇒ if String.eqb i i' then Some t else tlookup i tr'
| _ ⇒ None
end.
The step function uses this term-level lookup function in the
projection rule.
Inductive step : tm → tm → Prop :=
| ST_AppAbs : ∀ x T2 t1 v2,
value v2 →
<{(\x:T2, t1) v2}> --> <{ [x:=v2]t1 }>
| ST_App1 : ∀ t1 t1' t2,
t1 --> t1' →
<{t1 t2}> --> <{t1' t2}>
| ST_App2 : ∀ v1 t2 t2',
value v1 →
t2 --> t2' →
<{v1 t2}> --> <{v1 t2'}>
| ST_Proj1 : ∀ t1 t1' i,
t1 --> t1' →
<{ t1 --> i }> --> <{ t1' --> i }>
| ST_ProjRcd : ∀ tr i vi,
value tr →
tlookup i tr = Some vi →
<{ tr --> i }> --> vi
| ST_Rcd_Head : ∀ i t1 t1' tr2,
t1 --> t1' →
<{ i := t1 :: tr2 }> --> <{ i := t1' :: tr2 }>
| ST_Rcd_Tail : ∀ i v1 tr2 tr2',
value v1 →
tr2 --> tr2' →
<{ i := v1 :: tr2 }> --> <{ i := v1 :: tr2' }>
where "t '-->' t'" := (step t t').
Notation multistep := (multi step).
Notation "t1 '-->*' t2" := (multistep t1 t2) (at level 40).
Hint Constructors step : core.
Typing
Fixpoint Tlookup (i:string) (Tr:ty) : option ty :=
match Tr with
| <{{ i' : T :: Tr' }}> ⇒
if String.eqb i i' then Some T else Tlookup i Tr'
| _ ⇒ None
end.
Definition context := partial_map ty.
Inductive has_type (Gamma : context) :tm → ty → Prop :=
| T_Var : ∀ x T,
Gamma x = Some T →
well_formed_ty T →
Gamma |-- x \in T
| T_Abs : ∀ x T11 T12 t12,
well_formed_ty T11 →
(x ⊢> T11; Gamma) |-- t12 \in T12 →
Gamma |-- \x : T11, t12 \in (T11 → T12)
| T_App : ∀ T1 T2 t1 t2,
Gamma |-- t1 \in (T1 → T2) →
Gamma |-- t2 \in T1 →
Gamma |-- ( t1 t2) \in T2
(* records: *)
| T_Proj : ∀ i t Ti Tr,
Gamma |-- t \in Tr →
Tlookup i Tr = Some Ti →
Gamma |-- (t --> i) \in Ti
| T_RNil :
Gamma |-- nil \in nil
| T_RCons : ∀ i t T tr Tr,
Gamma |-- t \in T →
Gamma |-- tr \in Tr →
record_ty Tr →
record_tm tr →
Gamma |-- ( i := t :: tr) \in ( i : T :: Tr)
where "Gamma '|--' t '∈' T" := (has_type Gamma t T).
Hint Constructors has_type : core.
match Tr with
| <{{ i' : T :: Tr' }}> ⇒
if String.eqb i i' then Some T else Tlookup i Tr'
| _ ⇒ None
end.
Definition context := partial_map ty.
Inductive has_type (Gamma : context) :tm → ty → Prop :=
| T_Var : ∀ x T,
Gamma x = Some T →
well_formed_ty T →
Gamma |-- x \in T
| T_Abs : ∀ x T11 T12 t12,
well_formed_ty T11 →
(x ⊢> T11; Gamma) |-- t12 \in T12 →
Gamma |-- \x : T11, t12 \in (T11 → T12)
| T_App : ∀ T1 T2 t1 t2,
Gamma |-- t1 \in (T1 → T2) →
Gamma |-- t2 \in T1 →
Gamma |-- ( t1 t2) \in T2
(* records: *)
| T_Proj : ∀ i t Ti Tr,
Gamma |-- t \in Tr →
Tlookup i Tr = Some Ti →
Gamma |-- (t --> i) \in Ti
| T_RNil :
Gamma |-- nil \in nil
| T_RCons : ∀ i t T tr Tr,
Gamma |-- t \in T →
Gamma |-- tr \in Tr →
record_ty Tr →
record_tm tr →
Gamma |-- ( i := t :: tr) \in ( i : T :: Tr)
where "Gamma '|--' t '∈' T" := (has_type Gamma t T).
Hint Constructors has_type : core.
Examples
Exercise: 2 stars, standard (examples)
Finish the proofs below. Feel free to use Coq's automation features in this proof. However, if you are not confident about how the type system works, you may want to carry out the proofs first using the basic features (apply instead of eapply, in particular) and then perhaps compress it using automation.
Lemma typing_example_2 :
empty |-- (\a : ( i1 : (A → A) :: i2 : (B → B) :: nil), a --> i2)
( i1 := (\a : A, a) :: i2 := (\a : B,a ) :: nil ) \in (B → B).
Proof.
(* FILL IN HERE *) Admitted.
Example typing_nonexample :
¬ ∃ T,
(a ⊢> <{{ i2 : (A → A) :: nil }}>) |--
( i1 := (\a : B, a) :: a ) \in
T.
Proof.
(* FILL IN HERE *) Admitted.
Example typing_nonexample_2 : ∀ y,
¬ ∃ T,
(y ⊢> A) |--
(\a : ( i1 : A :: nil ), a --> i1 )
( i1 := y :: i2 := y :: nil ) \in T.
Proof.
(* FILL IN HERE *) Admitted.
☐
empty |-- (\a : ( i1 : (A → A) :: i2 : (B → B) :: nil), a --> i2)
( i1 := (\a : A, a) :: i2 := (\a : B,a ) :: nil ) \in (B → B).
Proof.
(* FILL IN HERE *) Admitted.
Example typing_nonexample :
¬ ∃ T,
(a ⊢> <{{ i2 : (A → A) :: nil }}>) |--
( i1 := (\a : B, a) :: a ) \in
T.
Proof.
(* FILL IN HERE *) Admitted.
Example typing_nonexample_2 : ∀ y,
¬ ∃ T,
(y ⊢> A) |--
(\a : ( i1 : A :: nil ), a --> i1 )
( i1 := y :: i2 := y :: nil ) \in T.
Proof.
(* FILL IN HERE *) Admitted.
☐
Properties of Typing
Lemma wf_rcd_lookup : ∀ i T Ti,
well_formed_ty T →
Tlookup i T = Some Ti →
well_formed_ty Ti.
Lemma step_preserves_record_tm : ∀ tr tr',
record_tm tr →
tr --> tr' →
record_tm tr'.
Lemma has_type__wf : ∀ Gamma t T,
Gamma |-- t \in T → well_formed_ty T.
well_formed_ty T →
Tlookup i T = Some Ti →
well_formed_ty Ti.
Proof with eauto.
intros i T.
induction T; intros; try solve_by_invert.
- (* RCons *)
inversion H. subst. unfold Tlookup in H0.
destruct (String.eqb i s)...
inversion H0. subst... Qed.
intros i T.
induction T; intros; try solve_by_invert.
- (* RCons *)
inversion H. subst. unfold Tlookup in H0.
destruct (String.eqb i s)...
inversion H0. subst... Qed.
Lemma step_preserves_record_tm : ∀ tr tr',
record_tm tr →
tr --> tr' →
record_tm tr'.
Proof.
intros tr tr' Hrt Hstp.
inversion Hrt; subst; inversion Hstp; subst; auto.
Qed.
intros tr tr' Hrt Hstp.
inversion Hrt; subst; inversion Hstp; subst; auto.
Qed.
Lemma has_type__wf : ∀ Gamma t T,
Gamma |-- t \in T → well_formed_ty T.
Proof with eauto.
intros Gamma t T Htyp.
induction Htyp...
- (* T_App *)
inversion IHHtyp1...
- (* T_Proj *)
eapply wf_rcd_lookup...
Qed.
intros Gamma t T Htyp.
induction Htyp...
- (* T_App *)
inversion IHHtyp1...
- (* T_Proj *)
eapply wf_rcd_lookup...
Qed.
Field Lookup
- If i = i0, then since Tlookup i (RCons i0 T Tr) = Some
Ti we have T = Ti. It follows that t itself satisfies
the theorem.
- On the other hand, suppose i ≠ i0. Then
Tlookup i T = Tlookup i Tr and
tlookup i t = tlookup i tr, so the result follows from the induction hypothesis. ☐
Lemma lookup_field_in_value : ∀ v T i Ti,
value v →
empty |-- v \in T →
Tlookup i T = Some Ti →
∃ ti, tlookup i v = Some ti ∧ empty |-- ti \in Ti.
value v →
empty |-- v \in T →
Tlookup i T = Some Ti →
∃ ti, tlookup i v = Some ti ∧ empty |-- ti \in Ti.
Proof with eauto.
intros v T i Ti Hval Htyp Hget.
remember empty as Gamma.
induction Htyp; subst; try solve_by_invert...
- (* T_RCons *)
simpl in Hget. simpl. destruct (String.eqb i i0).
+ (* i is first *)
simpl. injection Hget as Hget. subst.
∃ t...
+ (* get tail *)
destruct IHHtyp2 as [vi [Hgeti Htypi] ]...
inversion Hval... Qed.
intros v T i Ti Hval Htyp Hget.
remember empty as Gamma.
induction Htyp; subst; try solve_by_invert...
- (* T_RCons *)
simpl in Hget. simpl. destruct (String.eqb i i0).
+ (* i is first *)
simpl. injection Hget as Hget. subst.
∃ t...
+ (* get tail *)
destruct IHHtyp2 as [vi [Hgeti Htypi] ]...
inversion Hval... Qed.
Theorem progress : ∀ t T,
empty |-- t \in T →
value t ∨ ∃ t', t --> t'.
empty |-- t \in T →
value t ∨ ∃ t', t --> t'.
Proof with eauto.
(* Theorem: Suppose empty |-- t : T. Then either
1. t is a value, or
2. t --> t' for some t'.
Proof: By induction on the given typing derivation. *)
intros t T Ht.
remember empty as Gamma.
generalize dependent HeqGamma.
induction Ht; intros HeqGamma; subst.
- (* T_Var *)
(* The final rule in the given typing derivation cannot be
T_Var, since it can never be the case that
empty |-- x : T (since the context is empty). *)
inversion H.
- (* T_Abs *)
(* If the T_Abs rule was the last used, then
t = abs x T11 t12, which is a value. *)
left...
- (* T_App *)
(* If the last rule applied was T_App, then t = t1 t2,
and we know from the form of the rule that
empty |-- t1 : T1 → T2
empty |-- t2 : T1
By the induction hypothesis, each of t1 and t2 either is a value
or can take a step. *)
right.
destruct IHHt1; subst...
+ (* t1 is a value *)
destruct IHHt2; subst...
× (* t2 is a value *)
(* If both t1 and t2 are values, then we know that
t1 = abs x T11 t12, since abstractions are the only
values that can have an arrow type. But
(abs x T11 t12) t2 --> [x:=t2]t12 by ST_AppAbs. *)
inversion H; subst; try solve_by_invert.
∃ <{ [x:=t2]t0 }>...
× (* t2 steps *)
(* If t1 is a value and t2 --> t2', then
t1 t2 --> t1 t2' by ST_App2. *)
destruct H0 as [t2' Hstp]. ∃ <{ t1 t2' }>...
+ (* t1 steps *)
(* Finally, If t1 --> t1', then t1 t2 --> t1' t2
by ST_App1. *)
destruct H as [t1' Hstp]. ∃ <{ t1' t2 }>...
- (* T_Proj *)
(* If the last rule in the given derivation is T_Proj, then
t = rproj t i and
empty |-- t : (TRcd Tr)
By the IH, t either is a value or takes a step. *)
right. destruct IHHt...
+ (* rcd is value *)
(* If t is a value, then we may use lemma
lookup_field_in_value to show tlookup i t = Some ti
for some ti which gives us rproj i t --> ti by
ST_ProjRcd. *)
destruct (lookup_field_in_value _ _ _ _ H0 Ht H)
as [ti [Hlkup _] ].
∃ ti...
+ (* rcd_steps *)
(* On the other hand, if t --> t', then
rproj t i --> rproj t' i by ST_Proj1. *)
destruct H0 as [t' Hstp]. ∃ <{ t' --> i }>...
- (* T_RNil *)
(* If the last rule in the given derivation is T_RNil,
then t = trnil, which is a value. *)
left...
- (* T_RCons *)
(* If the last rule is T_RCons, then t = rcons i t tr and
empty |-- t : T
empty |-- tr : Tr
By the IH, each of t and tr either is a value or can
take a step. *)
destruct IHHt1...
+ (* head is a value *)
destruct IHHt2; try reflexivity.
× (* tail is a value *)
(* If t and tr are both values, then rcons i t tr
is a value as well. *)
left...
× (* tail steps *)
(* If t is a value and tr --> tr', then
rcons i t tr --> rcons i t tr' by
ST_Rcd_Tail. *)
right. destruct H2 as [tr' Hstp].
∃ <{ i := t :: tr'}>...
+ (* head steps *)
(* If t --> t', then
rcons i t tr --> rcons i t' tr
by ST_Rcd_Head. *)
right. destruct H1 as [t' Hstp].
∃ <{ i := t' :: tr }>... Qed.
(* Theorem: Suppose empty |-- t : T. Then either
1. t is a value, or
2. t --> t' for some t'.
Proof: By induction on the given typing derivation. *)
intros t T Ht.
remember empty as Gamma.
generalize dependent HeqGamma.
induction Ht; intros HeqGamma; subst.
- (* T_Var *)
(* The final rule in the given typing derivation cannot be
T_Var, since it can never be the case that
empty |-- x : T (since the context is empty). *)
inversion H.
- (* T_Abs *)
(* If the T_Abs rule was the last used, then
t = abs x T11 t12, which is a value. *)
left...
- (* T_App *)
(* If the last rule applied was T_App, then t = t1 t2,
and we know from the form of the rule that
empty |-- t1 : T1 → T2
empty |-- t2 : T1
By the induction hypothesis, each of t1 and t2 either is a value
or can take a step. *)
right.
destruct IHHt1; subst...
+ (* t1 is a value *)
destruct IHHt2; subst...
× (* t2 is a value *)
(* If both t1 and t2 are values, then we know that
t1 = abs x T11 t12, since abstractions are the only
values that can have an arrow type. But
(abs x T11 t12) t2 --> [x:=t2]t12 by ST_AppAbs. *)
inversion H; subst; try solve_by_invert.
∃ <{ [x:=t2]t0 }>...
× (* t2 steps *)
(* If t1 is a value and t2 --> t2', then
t1 t2 --> t1 t2' by ST_App2. *)
destruct H0 as [t2' Hstp]. ∃ <{ t1 t2' }>...
+ (* t1 steps *)
(* Finally, If t1 --> t1', then t1 t2 --> t1' t2
by ST_App1. *)
destruct H as [t1' Hstp]. ∃ <{ t1' t2 }>...
- (* T_Proj *)
(* If the last rule in the given derivation is T_Proj, then
t = rproj t i and
empty |-- t : (TRcd Tr)
By the IH, t either is a value or takes a step. *)
right. destruct IHHt...
+ (* rcd is value *)
(* If t is a value, then we may use lemma
lookup_field_in_value to show tlookup i t = Some ti
for some ti which gives us rproj i t --> ti by
ST_ProjRcd. *)
destruct (lookup_field_in_value _ _ _ _ H0 Ht H)
as [ti [Hlkup _] ].
∃ ti...
+ (* rcd_steps *)
(* On the other hand, if t --> t', then
rproj t i --> rproj t' i by ST_Proj1. *)
destruct H0 as [t' Hstp]. ∃ <{ t' --> i }>...
- (* T_RNil *)
(* If the last rule in the given derivation is T_RNil,
then t = trnil, which is a value. *)
left...
- (* T_RCons *)
(* If the last rule is T_RCons, then t = rcons i t tr and
empty |-- t : T
empty |-- tr : Tr
By the IH, each of t and tr either is a value or can
take a step. *)
destruct IHHt1...
+ (* head is a value *)
destruct IHHt2; try reflexivity.
× (* tail is a value *)
(* If t and tr are both values, then rcons i t tr
is a value as well. *)
left...
× (* tail steps *)
(* If t is a value and tr --> tr', then
rcons i t tr --> rcons i t tr' by
ST_Rcd_Tail. *)
right. destruct H2 as [tr' Hstp].
∃ <{ i := t :: tr'}>...
+ (* head steps *)
(* If t --> t', then
rcons i t tr --> rcons i t' tr
by ST_Rcd_Head. *)
right. destruct H1 as [t' Hstp].
∃ <{ i := t' :: tr }>... Qed.
Lemma weakening : ∀ Gamma Gamma' t T,
includedin Gamma Gamma' →
Gamma |-- t \in T →
Gamma' |-- t \in T.
Proof.
intros Gamma Gamma' t T H Ht.
generalize dependent Gamma'.
induction Ht; eauto using includedin_update.
Qed.
Lemma weakening_empty : ∀ Gamma t T,
empty |-- t \in T →
Gamma |-- t \in T.
Proof.
intros Gamma t T.
eapply weakening.
discriminate.
Qed.
includedin Gamma Gamma' →
Gamma |-- t \in T →
Gamma' |-- t \in T.
Proof.
intros Gamma Gamma' t T H Ht.
generalize dependent Gamma'.
induction Ht; eauto using includedin_update.
Qed.
Lemma weakening_empty : ∀ Gamma t T,
empty |-- t \in T →
Gamma |-- t \in T.
Proof.
intros Gamma t T.
eapply weakening.
discriminate.
Qed.
Preservation
Lemma substitution_preserves_typing : ∀ Gamma x U t v T,
(x ⊢> U ; Gamma) |-- t \in T →
empty |-- v \in U →
Gamma |-- [x:=v]t \in T.
Proof.
intros Gamma x U t v T Ht Hv.
generalize dependent Gamma. generalize dependent T.
induction t; intros T Gamma H;
(* in each case, we'll want to get at the derivation of H *)
inversion H; clear H; subst; simpl; eauto.
- (* var *)
rename s into y. destruct (eqb_spec x y); subst.
+ (* x=y *)
rewrite update_eq in H1.
injection H1 as H1; subst.
apply weakening_empty. assumption.
+ (* x<>y *)
apply T_Var. rewrite update_neq in H1; auto. assumption.
- (* abs *)
rename s into y, t into T.
destruct (eqb_spec x y); subst; apply T_Abs; try assumption.
+ (* x=y *)
rewrite update_shadow in H5. assumption.
+ (* x<>y *)
apply IHt.
rewrite update_permute; auto.
- (* rcons *) (* <=== only new case compared to pure STLC *)
apply T_RCons; eauto.
inversion H7; subst; simpl; auto.
Qed.
Theorem preservation : ∀ t t' T,
empty |-- t \in T →
t --> t' →
empty |-- t' \in T.
Proof with eauto.
intros t t' T HT. generalize dependent t'.
remember empty as Gamma.
induction HT;
intros t' HE; subst;
try solve [inversion HE; subst; auto].
- (* T_App *)
inversion HE; subst...
+ (* ST_AppAbs *)
apply substitution_preserves_typing with T1...
inversion HT1...
- (* T_Proj *) (* <=== new case compared to pure STLC *)
(* If the last rule was T_Proj, then t = rproj t1 i.
Two rules could have caused t --> t': T_Proj1 and
T_ProjRcd. The typing of t' follows from the IH
in the former case, so we only consider T_ProjRcd.
Here we have that t is a record value. Since rule
T_Proj was used, we know empty |-- t \in Tr and
Tlookup i Tr = Some Ti for some i and Tr.
We may therefore apply lemma lookup_field_in_value
to find the record element this projection steps to. *)
inversion HE; subst...
destruct (lookup_field_in_value _ _ _ _ H2 HT H)
as [vi [Hget Htyp] ].
rewrite H4 in Hget. injection Hget as Hget. subst...
- (* T_RCons *) (* <=== new case compared to pure STLC *)
(* If the last rule was T_RCons, then t = rcons i t tr
for some i, t and tr such that record_tm tr. If
the step is by ST_Rcd_Head, the result is immediate by
the IH. If the step is by ST_Rcd_Tail, tr --> tr2'
for some tr2' and we must also use lemma step_preserves_record_tm
to show record_tm tr2'. *)
inversion HE; subst...
apply T_RCons... eapply step_preserves_record_tm...
Qed.
End STLCExtendedRecords.
(* 2024-01-02 15:05 *)
(x ⊢> U ; Gamma) |-- t \in T →
empty |-- v \in U →
Gamma |-- [x:=v]t \in T.
Proof.
intros Gamma x U t v T Ht Hv.
generalize dependent Gamma. generalize dependent T.
induction t; intros T Gamma H;
(* in each case, we'll want to get at the derivation of H *)
inversion H; clear H; subst; simpl; eauto.
- (* var *)
rename s into y. destruct (eqb_spec x y); subst.
+ (* x=y *)
rewrite update_eq in H1.
injection H1 as H1; subst.
apply weakening_empty. assumption.
+ (* x<>y *)
apply T_Var. rewrite update_neq in H1; auto. assumption.
- (* abs *)
rename s into y, t into T.
destruct (eqb_spec x y); subst; apply T_Abs; try assumption.
+ (* x=y *)
rewrite update_shadow in H5. assumption.
+ (* x<>y *)
apply IHt.
rewrite update_permute; auto.
- (* rcons *) (* <=== only new case compared to pure STLC *)
apply T_RCons; eauto.
inversion H7; subst; simpl; auto.
Qed.
Theorem preservation : ∀ t t' T,
empty |-- t \in T →
t --> t' →
empty |-- t' \in T.
Proof with eauto.
intros t t' T HT. generalize dependent t'.
remember empty as Gamma.
induction HT;
intros t' HE; subst;
try solve [inversion HE; subst; auto].
- (* T_App *)
inversion HE; subst...
+ (* ST_AppAbs *)
apply substitution_preserves_typing with T1...
inversion HT1...
- (* T_Proj *) (* <=== new case compared to pure STLC *)
(* If the last rule was T_Proj, then t = rproj t1 i.
Two rules could have caused t --> t': T_Proj1 and
T_ProjRcd. The typing of t' follows from the IH
in the former case, so we only consider T_ProjRcd.
Here we have that t is a record value. Since rule
T_Proj was used, we know empty |-- t \in Tr and
Tlookup i Tr = Some Ti for some i and Tr.
We may therefore apply lemma lookup_field_in_value
to find the record element this projection steps to. *)
inversion HE; subst...
destruct (lookup_field_in_value _ _ _ _ H2 HT H)
as [vi [Hget Htyp] ].
rewrite H4 in Hget. injection Hget as Hget. subst...
- (* T_RCons *) (* <=== new case compared to pure STLC *)
(* If the last rule was T_RCons, then t = rcons i t tr
for some i, t and tr such that record_tm tr. If
the step is by ST_Rcd_Head, the result is immediate by
the IH. If the step is by ST_Rcd_Tail, tr --> tr2'
for some tr2' and we must also use lemma step_preserves_record_tm
to show record_tm tr2'. *)
inversion HE; subst...
apply T_RCons... eapply step_preserves_record_tm...
Qed.
End STLCExtendedRecords.
(* 2024-01-02 15:05 *)