EquivProgram Equivalence

Set Warnings "-notation-overridden,-parsing,-deprecated-hint-without-locality".
From PLF Require Import Maps.
From Coq Require Import Bool.Bool.
From Coq Require Import Arith.Arith.
From Coq Require Import Init.Nat.
From Coq Require Import Arith.PeanoNat. Import Nat.
From Coq Require Import Arith.EqNat.
From Coq Require Import Lia.
From Coq Require Import Lists.List. Import ListNotations.
From Coq Require Import Logic.FunctionalExtensionality.
From PLF Require Export Imp.
Set Default Goal Selector "!".

Before You Get Started:

  • Create a fresh directory for this volume. (Do not try to mix the files from this volume with files from Logical Foundations in the same directory: the result will not make you happy.) You can either start with an empty directory and populate it with the files listed below, or else download the whole PLF zip file and unzip it.
  • The new directory should contain at least the following files:
    • Imp.v (make sure it is the one from the PLF distribution, not the one from LF: they are slightly different);
    • Maps.v (ditto)
    • Equiv.v (this file)
    • _CoqProject, containing the following line:
                 -Q . PLF
  • If you see errors like this...
                 Compiled library PLF.Maps (in file
                 /Users/.../plf/Maps.vo) makes inconsistent assumptions
                 over library Coq.Init.Logic
    ... it may mean something went wrong with the above steps. Doing "make clean" (or manually removing everything except .v and _CoqProject files) may help.
  • If you are using VSCode with the VSCoq extension, you'll then want to open a new window in VSCode, click Open Folder > plf, and run make. If you get an error like "Cannot find a physical path..." error, it may be because you didn't open plf directly (you instead opened a folder containing both lf and plf, for example).

Advice for Working on Exercises:

  • Most of the Coq proofs we ask you to do in this chapter are similar to proofs that we've provided. Before starting to work on exercises, take the time to work through our proofs (both informally and in Coq) and make sure you understand them in detail. This will save you a lot of time.
  • The Coq proofs we're doing now are sufficiently complicated that it is more or less impossible to complete them by random experimentation or following your nose. You need to start with an idea about why the property is true and how the proof is going to go. The best way to do this is to write out at least a sketch of an informal proof on paper -- one that intuitively convinces you of the truth of the theorem -- before starting to work on the formal one. Alternately, grab a friend and try to convince them that the theorem is true; then try to formalize your explanation.
  • Use automation to save work! The proofs in this chapter can get pretty long if you try to write out all the cases explicitly.

Behavioral Equivalence

In an earlier chapter, we investigated the correctness of a very simple program transformation: the optimize_0plus function. The programming language we were considering was the first version of the language of arithmetic expressions -- with no variables -- so in that setting it was very easy to define what it means for a program transformation to be correct: it should always yield a program that evaluates to the same number as the original.
To talk about the correctness of program transformations for the full Imp language -- in particular, assignment -- we need to consider the role of mutable state and develop a more sophisticated notion of correctness, which we'll call behavioral equivalence.
For example:
  • X + 2 is behaviorally equivalent to 1 + X + 1
  • X - X is behaviorally equivalent to 0
  • (X - 1) + 1 is not behaviorally equivalent to X

Definitions

For aexps and bexps with variables, the definition we want is clear: Two aexps or bexps are "behaviorally equivalent" if they evaluate to the same result in every state.
Definition aequiv (a1 a2 : aexp) : Prop :=
   (st : state),
    aeval st a1 = aeval st a2.

Definition bequiv (b1 b2 : bexp) : Prop :=
   (st : state),
    beval st b1 = beval st b2.
Here are some simple examples of equivalences of arithmetic and boolean expressions.
Theorem aequiv_example:
  aequiv
    <{ X - X }>
    <{ 0 }>.
Proof.
  intros st. simpl. lia.
Qed.

Theorem bequiv_example:
  bequiv
    <{ X - X = 0 }>
    <{ true }>.
Proof.
  intros st. unfold beval.
  rewrite aequiv_example. reflexivity.
Qed.
For commands, the situation is a little more subtle. We can't simply say "two commands are behaviorally equivalent if they evaluate to the same ending state whenever they are started in the same initial state," because some commands, when run in some starting states, don't terminate in any final state at all!
What we need instead is this: two commands are behaviorally equivalent if, for any given starting state, they either (1) both diverge or (2) both terminate in the same final state. A compact way to express this is "if the first one terminates in a particular state then so does the second, and vice versa."
Definition cequiv (c1 c2 : com) : Prop :=
   (st st' : state),
    (st =[ c1 ]=> st') (st =[ c2 ]=> st').
We can also define an asymmetric variant of this relation: We say that c1 refines c2 if they produce the same final states when c1 terminates (but c1 may not terminate in some cases where c2 does).
Definition refines (c1 c2 : com) : Prop :=
   (st st' : state),
    (st =[ c1 ]=> st') (st =[ c2 ]=> st').

Simple Examples

For examples of command equivalence, let's start by looking at a trivial program equivalence involving skip:
Theorem skip_left : c,
  cequiv
    <{ skip; c }>
    c.
Proof.
  (* WORKED IN CLASS *)
  intros c st st'.
  split; intros H.
  - (* -> *)
    inversion H. subst.
    inversion H2. subst.
    assumption.
  - (* <- *)
    apply E_Seq with st.
    + apply E_Skip.
    + assumption.
Qed.

Exercise: 2 stars, standard (skip_right)

Prove that adding a skip after a command results in an equivalent program
Theorem skip_right : c,
  cequiv
    <{ c ; skip }>
    c.
Proof.
  (* FILL IN HERE *) Admitted.
Similarly, here is a simple equivalence that optimizes if commands:
Theorem if_true_simple : c1 c2,
  cequiv
    <{ if true then c1 else c2 end }>
    c1.
Proof.
  intros c1 c2.
  split; intros H.
  - (* -> *)
    inversion H; subst.
    + assumption.
    + discriminate.
  - (* <- *)
    apply E_IfTrue.
    + reflexivity.
    + assumption. Qed.
Of course, no (human) programmer would write a conditional whose condition is literally true. But they might write one whose condition is equivalent to true: Theorem: If b is equivalent to true, then if b then c1 else c2 end is equivalent to c1.
Proof:
  • () We must show, for all st and st', that if st =[ if b then c1 else c2 end ]=> st' then st =[ c1 ]=> st'.
    Proceed by cases on the rules that could possibly have been used to show st =[ if b then c1 else c2 end ]=> st', namely E_IfTrue and E_IfFalse.
    • Suppose the final rule in the derivation of st =[ if b then c1 else c2 end ]=> st' was E_IfTrue. We then have, by the premises of E_IfTrue, that st =[ c1 ]=> st'. This is exactly what we set out to prove.
    • On the other hand, suppose the final rule in the derivation of st =[ if b then c1 else c2 end ]=> st' was E_IfFalse. We then know that beval st b = false and st =[ c2 ]=> st'.
      Recall that b is equivalent to true, i.e., forall st, beval st b = beval st <{true}> . In particular, this means that beval st b = true, since beval st <{true}> = true. But this is a contradiction, since E_IfFalse requires that beval st b = false. Thus, the final rule could not have been E_IfFalse.
  • (<-) We must show, for all st and st', that if st =[ c1 ]=> st' then st =[ if b then c1 else c2 end ]=> st'.
    Since b is equivalent to true, we know that beval st b = beval st <{true}> = true. Together with the assumption that st =[ c1 ]=> st', we can apply E_IfTrue to derive st =[ if b then c1 else c2 end ]=> st'.
Here is the formal version of this proof:
Theorem if_true: b c1 c2,
  bequiv b <{true}>
  cequiv
    <{ if b then c1 else c2 end }>
    c1.
Proof.
  intros b c1 c2 Hb.
  split; intros H.
  - (* -> *)
    inversion H; subst.
    + (* b evaluates to true *)
      assumption.
    + (* b evaluates to false (contradiction) *)
      unfold bequiv in Hb. simpl in Hb.
      rewrite Hb in H5.
      discriminate.
  - (* <- *)
    apply E_IfTrue; try assumption.
    unfold bequiv in Hb. simpl in Hb.
    apply Hb. Qed.

Exercise: 2 stars, standard, especially useful (if_false)

Theorem if_false : b c1 c2,
  bequiv b <{false}>
  cequiv
    <{ if b then c1 else c2 end }>
    c2.
Proof.
  (* FILL IN HERE *) Admitted.

Exercise: 3 stars, standard (swap_if_branches)

Show that we can swap the branches of an if if we also negate its condition.
Theorem swap_if_branches : b c1 c2,
  cequiv
    <{ if b then c1 else c2 end }>
    <{ if ¬ b then c2 else c1 end }>.
Proof.
  (* FILL IN HERE *) Admitted.
For while loops, we can give a similar pair of theorems. A loop whose guard is equivalent to false is equivalent to skip, while a loop whose guard is equivalent to true is equivalent to while true do skip end (or any other non-terminating program).
The first of these facts is easy.
Theorem while_false : b c,
  bequiv b <{false}>
  cequiv
    <{ while b do c end }>
    <{ skip }>.
Proof.
  intros b c Hb. split; intros H.
  - (* -> *)
    inversion H; subst.
    + (* E_WhileFalse *)
      apply E_Skip.
    + (* E_WhileTrue *)
      rewrite Hb in H2. discriminate.
  - (* <- *)
    inversion H. subst.
    apply E_WhileFalse.
    apply Hb. Qed.

Exercise: 2 stars, advanced, optional (while_false_informal)

Write an informal proof of while_false.
(* FILL IN HERE *)
To prove the second fact, we need an auxiliary lemma stating that while loops whose guards are equivalent to true never terminate.
Lemma: If b is equivalent to true, then it cannot be the case that st =[ while b do c end ]=> st'.
Proof: Suppose that st =[ while b do c end ]=> st'. We show, by induction on a derivation of st =[ while b do c end ]=> st', that this assumption leads to a contradiction. The only two cases to consider are E_WhileFalse and E_WhileTrue, the others are contradictory.
  • Suppose st =[ while b do c end ]=> st' is proved using rule E_WhileFalse. Then by assumption beval st b = false. But this contradicts the assumption that b is equivalent to true.
  • Suppose st =[ while b do c end ]=> st' is proved using rule E_WhileTrue. We must have that:
    1. beval st b = true, 2. there is some st0 such that st =[ c ]=> st0 and st0 =[ while b do c end ]=> st', 3. and we are given the induction hypothesis that st0 =[ while b do c end ]=> st' leads to a contradiction,
    We obtain a contradiction by 2 and 3.
Lemma while_true_nonterm : b c st st',
  bequiv b <{true}>
  ~( st =[ while b do c end ]=> st' ).
Proof.
  (* WORKED IN CLASS *)
  intros b c st st' Hb.
  intros H.
  remember <{ while b do c end }> as cw eqn:Heqcw.
  induction H;
  (* Most rules don't apply; we rule them out by inversion: *)
  inversion Heqcw; subst; clear Heqcw.
  (* The two interesting cases are the ones for while loops: *)
  - (* E_WhileFalse *) (* contradictory -- b is always true! *)
    unfold bequiv in Hb.
    (* rewrite is able to instantiate the quantifier in st *)
    rewrite Hb in H. discriminate.
  - (* E_WhileTrue *) (* immediate from the IH *)
    apply IHceval2. reflexivity. Qed.

Exercise: 2 stars, standard, optional (while_true_nonterm_informal)

Explain what the lemma while_true_nonterm means in English.
(* FILL IN HERE *)

Exercise: 2 stars, standard, especially useful (while_true)

Prove the following theorem. Hint: You'll want to use while_true_nonterm here.
Theorem while_true : b c,
  bequiv b <{true}>
  cequiv
    <{ while b do c end }>
    <{ while true do skip end }>.
Proof.
  (* FILL IN HERE *) Admitted.
A more interesting fact about while commands is that any number of copies of the body can be "unrolled" without changing meaning.
Loop unrolling is an important transformation in any real compiler: its correctness is of more than academic interest!
Theorem loop_unrolling : b c,
  cequiv
    <{ while b do c end }>
    <{ if b then c ; while b do c end else skip end }>.
Proof.
  (* WORKED IN CLASS *)
  intros b c st st'.
  split; intros Hce.
  - (* -> *)
    inversion Hce; subst.
    + (* loop doesn't run *)
      apply E_IfFalse.
      × assumption.
      × apply E_Skip.
    + (* loop runs *)
      apply E_IfTrue.
      × assumption.
      × apply E_Seq with (st' := st'0).
        -- assumption.
        -- assumption.
  - (* <- *)
    inversion Hce; subst.
    + (* loop runs *)
      inversion H5; subst.
      apply E_WhileTrue with (st' := st'0).
      × assumption.
      × assumption.
      × assumption.
    + (* loop doesn't run *)
      inversion H5; subst. apply E_WhileFalse. assumption. Qed.

Exercise: 2 stars, standard, optional (seq_assoc)

Theorem seq_assoc : c1 c2 c3,
  cequiv <{(c1;c2);c3}> <{c1;(c2;c3)}>.
Proof.
  (* FILL IN HERE *) Admitted.
Proving program properties involving assignments is one place where the fact that program states are treated extensionally (e.g., x !-> m x ; m and m are equal maps) comes in handy.
Theorem identity_assignment : x,
  cequiv
    <{ x := x }>
    <{ skip }>.
Proof.
  intros.
  split; intro H; inversion H; subst; clear H.
  - (* -> *)
    rewrite t_update_same.
    apply E_Skip.
  - (* <- *)
    assert (Hx : st' =[ x := x ]=> (x !-> st' x ; st')).
    { apply E_Asgn. reflexivity. }
    rewrite t_update_same in Hx.
    apply Hx.
Qed.

Exercise: 2 stars, standard, especially useful (assign_aequiv)

Theorem assign_aequiv : (X : string) (a : aexp),
  aequiv <{ X }> a
  cequiv <{ skip }> <{ X := a }>.
Proof.
  (* FILL IN HERE *) Admitted.

Exercise: 2 stars, standard (equiv_classes)

Given the following programs, group together those that are equivalent in Imp. Your answer should be given as a list of lists, where each sub-list represents a group of equivalent programs. For example, if you think programs (a) through (h) are all equivalent to each other, but not to (i), your answer should look like this:
       [ [prog_a;prog_b;prog_c;prog_d;prog_e;prog_f;prog_g;prog_h] ;
         [prog_i] ]
Write down your answer below in the definition of equiv_classes.
Definition prog_a : com :=
  <{ while X > 0 do
       X := X + 1
     end }>.

Definition prog_b : com :=
  <{ if (X = 0) then
       X := X + 1;
       Y := 1
     else
       Y := 0
     end;
     X := X - Y;
     Y := 0 }>.

Definition prog_c : com :=
  <{ skip }> .

Definition prog_d : com :=
  <{ while X 0 do
       X := (X × Y) + 1
     end }>.

Definition prog_e : com :=
  <{ Y := 0 }>.

Definition prog_f : com :=
  <{ Y := X + 1;
     while X Y do
       Y := X + 1
     end }>.

Definition prog_g : com :=
  <{ while true do
       skip
     end }>.

Definition prog_h : com :=
  <{ while X X do
       X := X + 1
     end }>.

Definition prog_i : com :=
  <{ while X Y do
       X := Y + 1
     end }>.

Definition equiv_classes : list (list com)
  (* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.

(* Do not modify the following line: *)
Definition manual_grade_for_equiv_classes : option (nat×string) := None.

Properties of Behavioral Equivalence

We next consider some fundamental properties of program equivalence.

Behavioral Equivalence Is an Equivalence

First, let's verify that the equivalences on aexps, bexps, and coms really are equivalences -- i.e., that they are reflexive, symmetric, and transitive. The proofs are all easy.
Lemma refl_aequiv : (a : aexp),
  aequiv a a.
Proof.
  intros a st. reflexivity. Qed.

Lemma sym_aequiv : (a1 a2 : aexp),
  aequiv a1 a2 aequiv a2 a1.
Proof.
  intros a1 a2 H. intros st. symmetry. apply H. Qed.

Lemma trans_aequiv : (a1 a2 a3 : aexp),
  aequiv a1 a2 aequiv a2 a3 aequiv a1 a3.
Proof.
  unfold aequiv. intros a1 a2 a3 H12 H23 st.
  rewrite (H12 st). rewrite (H23 st). reflexivity. Qed.

Lemma refl_bequiv : (b : bexp),
  bequiv b b.
Proof.
  unfold bequiv. intros b st. reflexivity. Qed.

Lemma sym_bequiv : (b1 b2 : bexp),
  bequiv b1 b2 bequiv b2 b1.
Proof.
  unfold bequiv. intros b1 b2 H. intros st. symmetry. apply H. Qed.

Lemma trans_bequiv : (b1 b2 b3 : bexp),
  bequiv b1 b2 bequiv b2 b3 bequiv b1 b3.
Proof.
  unfold bequiv. intros b1 b2 b3 H12 H23 st.
  rewrite (H12 st). rewrite (H23 st). reflexivity. Qed.

Lemma refl_cequiv : (c : com),
  cequiv c c.
Proof.
  unfold cequiv. intros c st st'. reflexivity. Qed.

Lemma sym_cequiv : (c1 c2 : com),
  cequiv c1 c2 cequiv c2 c1.
Proof.
  unfold cequiv. intros c1 c2 H st st'.
  rewrite H. reflexivity.
Qed.

Lemma trans_cequiv : (c1 c2 c3 : com),
  cequiv c1 c2 cequiv c2 c3 cequiv c1 c3.
Proof.
  unfold cequiv. intros c1 c2 c3 H12 H23 st st'.
  rewrite H12. apply H23.
Qed.

Behavioral Equivalence Is a Congruence

Less obviously, behavioral equivalence is also a congruence. That is, the equivalence of two subprograms implies the equivalence of the larger programs in which they are embedded:
aequiv a a'  

cequiv (x := a) (x := a')
cequiv c1 c1'
cequiv c2 c2'  

cequiv (c1;c2) (c1';c2')
... and so on for the other forms of commands.
(Note that we are using the inference rule notation here not as part of an inductive definition, but simply to write down some valid implications in a readable format. We prove these implications below.)
We will see a concrete example of why these congruence properties are important in the following section (in the proof of fold_constants_com_sound), but the main idea is that they allow us to replace a small part of a large program with an equivalent small part and know that the whole large programs are equivalent without doing an explicit proof about the parts that didn't change -- i.e., the "proof burden" of a small change to a large program is proportional to the size of the change, not the program!
Theorem CAsgn_congruence : x a a',
  aequiv a a'
  cequiv <{x := a}> <{x := a'}>.
Proof.
  intros x a a' Heqv st st'.
  split; intros Hceval.
  - (* -> *)
    inversion Hceval. subst. apply E_Asgn.
    rewrite Heqv. reflexivity.
  - (* <- *)
    inversion Hceval. subst. apply E_Asgn.
    rewrite Heqv. reflexivity. Qed.
The congruence property for loops is a little more interesting, since it requires induction.
Theorem: Equivalence is a congruence for while -- that is, if b is equivalent to b' and c is equivalent to c', then while b do c end is equivalent to while b' do c' end.
Proof: Suppose b is equivalent to b' and c is equivalent to c'. We must show, for every st and st', that st =[ while b do c end ]=> st' iff st =[ while b' do c' end ]=> st'. We consider the two directions separately.
  • () We show that st =[ while b do c end ]=> st' implies st =[ while b' do c' end ]=> st', by induction on a derivation of st =[ while b do c end ]=> st'. The only nontrivial cases are when the final rule in the derivation is E_WhileFalse or E_WhileTrue.
    • E_WhileFalse: In this case, the form of the rule gives us beval st b = false and st = st'. But then, since b and b' are equivalent, we have beval st b' = false, and E_WhileFalse applies, giving us st =[ while b' do c' end ]=> st', as required.
    • E_WhileTrue: The form of the rule now gives us beval st b = true, with st =[ c ]=> st'0 and st'0 =[ while b do c end ]=> st' for some state st'0, with the induction hypothesis st'0 =[ while b' do c' end ]=> st'.
      Since c and c' are equivalent, we know that st =[ c' ]=> st'0. And since b and b' are equivalent, we have beval st b' = true. Now E_WhileTrue applies, giving us st =[ while b' do c' end ]=> st', as required.
  • (<-) Similar.
Theorem CWhile_congruence : b b' c c',
  bequiv b b' cequiv c c'
  cequiv <{ while b do c end }> <{ while b' do c' end }>.
Proof.
  (* WORKED IN CLASS *)

  (* We will prove one direction in an "assert"
     in order to reuse it for the converse. *)

  assert (A: (b b' : bexp) (c c' : com) (st st' : state),
             bequiv b b' cequiv c c'
             st =[ while b do c end ]=> st'
             st =[ while b' do c' end ]=> st').
  { unfold bequiv,cequiv.
    intros b b' c c' st st' Hbe Hc1e Hce.
    remember <{ while b do c end }> as cwhile
      eqn:Heqcwhile.
    induction Hce; inversion Heqcwhile; subst.
    + (* E_WhileFalse *)
      apply E_WhileFalse. rewrite <- Hbe. apply H.
    + (* E_WhileTrue *)
      apply E_WhileTrue with (st' := st').
      × (* show loop runs *) rewrite <- Hbe. apply H.
      × (* body execution *)
        apply (Hc1e st st'). apply Hce1.
      × (* subsequent loop execution *)
        apply IHHce2. reflexivity. }

  intros. split.
  - apply A; assumption.
  - apply A.
    + apply sym_bequiv. assumption.
    + apply sym_cequiv. assumption.
Qed.

Exercise: 3 stars, standard, optional (CSeq_congruence)

Theorem CSeq_congruence : c1 c1' c2 c2',
  cequiv c1 c1' cequiv c2 c2'
  cequiv <{ c1;c2 }> <{ c1';c2' }>.
Proof.
  (* FILL IN HERE *) Admitted.

Exercise: 3 stars, standard (CIf_congruence)

Theorem CIf_congruence : b b' c1 c1' c2 c2',
  bequiv b b' cequiv c1 c1' cequiv c2 c2'
  cequiv <{ if b then c1 else c2 end }>
         <{ if b' then c1' else c2' end }>.
Proof.
  (* FILL IN HERE *) Admitted.
For example, here are two equivalent programs and a proof of their equivalence using these congruence theorems...
Example congruence_example:
  cequiv
    (* Program 1: *)
    <{ X := 0;
       if X = 0 then Y := 0
       else Y := 42 end }>
    (* Program 2: *)
    <{ X := 0;
       if X = 0 then Y := X - X (* <--- Changed here *)
       else Y := 42 end }>.
Proof.
  apply CSeq_congruence.
  - apply refl_cequiv.
  - apply CIf_congruence.
    + apply refl_bequiv.
    + apply CAsgn_congruence. unfold aequiv. simpl.
      symmetry. apply sub_diag.
    + apply refl_cequiv.
Qed.

Exercise: 3 stars, advanced (not_congr)

We've shown that the cequiv relation is both an equivalence and a congruence on commands. Can you think of a relation on commands that is an equivalence but not a congruence? Write down the relation (formally), together with an informal sketch of a proof that it is an equivalence but not a congruence.
(* FILL IN HERE *)
(* Do not modify the following line: *)
Definition manual_grade_for_not_congr : option (nat×string) := None.

Program Transformations

A program transformation is a function that takes a program as input and produces a modified program as output. Compiler optimizations such as constant folding are a canonical example, but there are many others.
A program transformation is said to be sound if it preserves the behavior of the original program.
Definition atrans_sound (atrans : aexp aexp) : Prop :=
   (a : aexp),
    aequiv a (atrans a).

Definition btrans_sound (btrans : bexp bexp) : Prop :=
   (b : bexp),
    bequiv b (btrans b).

Definition ctrans_sound (ctrans : com com) : Prop :=
   (c : com),
    cequiv c (ctrans c).

The Constant-Folding Transformation

An expression is constant if it contains no variable references.
Constant folding is an optimization that finds constant expressions and replaces them by their values.
Fixpoint fold_constants_aexp (a : aexp) : aexp :=
  match a with
  | ANum nANum n
  | AId xAId x
  | <{ a1 + a2 }>
    match (fold_constants_aexp a1,
           fold_constants_aexp a2)
    with
    | (ANum n1, ANum n2)ANum (n1 + n2)
    | (a1', a2')<{ a1' + a2' }>
    end
  | <{ a1 - a2 }>
    match (fold_constants_aexp a1,
           fold_constants_aexp a2)
    with
    | (ANum n1, ANum n2)ANum (n1 - n2)
    | (a1', a2')<{ a1' - a2' }>
    end
  | <{ a1 × a2 }>
    match (fold_constants_aexp a1,
           fold_constants_aexp a2)
    with
    | (ANum n1, ANum n2)ANum (n1 × n2)
    | (a1', a2')<{ a1' × a2' }>
    end
  end.

Example fold_aexp_ex1 :
    fold_constants_aexp <{ (1 + 2) × X }>
  = <{ 3 × X }>.
Proof. reflexivity. Qed.
Note that this version of constant folding doesn't do other "obvious" things like eliminating trivial additions (e.g., rewriting 0 + X to just X).: we are focusing attention on a single optimization for the sake of simplicity.
It is not hard to incorporate other ways of simplifying expressions -- the definitions and proofs just get longer. We'll consider optimizations in the exercises.
Example fold_aexp_ex2 :
  fold_constants_aexp <{ X - ((0 × 6) + Y) }> = <{ X - (0 + Y) }>.
Proof. reflexivity. Qed.
Not only can we lift fold_constants_aexp to bexps (in the BEq, BNeq, and BLe cases); we can also look for constant boolean expressions and evaluate them in-place as well.
Fixpoint fold_constants_bexp (b : bexp) : bexp :=
  match b with
  | <{true}><{true}>
  | <{false}><{false}>
  | <{ a1 = a2 }>
      match (fold_constants_aexp a1,
             fold_constants_aexp a2) with
      | (ANum n1, ANum n2)
          if n1 =? n2 then <{true}> else <{false}>
      | (a1', a2')
          <{ a1' = a2' }>
      end
  | <{ a1 a2 }>
      match (fold_constants_aexp a1,
             fold_constants_aexp a2) with
      | (ANum n1, ANum n2)
          if negb (n1 =? n2) then <{true}> else <{false}>
      | (a1', a2')
          <{ a1' a2' }>
      end
  | <{ a1 a2 }>
      match (fold_constants_aexp a1,
             fold_constants_aexp a2) with
      | (ANum n1, ANum n2)
          if n1 <=? n2 then <{true}> else <{false}>
      | (a1', a2')
          <{ a1' a2' }>
      end
  | <{ a1 > a2 }>
      match (fold_constants_aexp a1,
             fold_constants_aexp a2) with
      | (ANum n1, ANum n2)
          if n1 <=? n2 then <{false}> else <{true}>
      | (a1', a2')
          <{ a1' > a2' }>
      end
  | <{ ¬ b1 }>
      match (fold_constants_bexp b1) with
      | <{true}><{false}>
      | <{false}><{true}>
      | b1'<{ ¬ b1' }>
      end
  | <{ b1 && b2 }>
      match (fold_constants_bexp b1,
             fold_constants_bexp b2) with
      | (<{true}>, <{true}>)<{true}>
      | (<{true}>, <{false}>)<{false}>
      | (<{false}>, <{true}>)<{false}>
      | (<{false}>, <{false}>)<{false}>
      | (b1', b2')<{ b1' && b2' }>
      end
  end.

Example fold_bexp_ex1 :
  fold_constants_bexp <{ true && ¬(false && true) }>
  = <{ true }>.
Proof. reflexivity. Qed.

Example fold_bexp_ex2 :
  fold_constants_bexp <{ (X = Y) && (0 = (2 - (1 + 1))) }>
  = <{ (X = Y) && true }>.
Proof. reflexivity. Qed.
To fold constants in a command, we apply the appropriate folding functions on all embedded expressions.
Fixpoint fold_constants_com (c : com) : com :=
  match c with
  | <{ skip }>
      <{ skip }>
  | <{ x := a }>
      <{ x := (fold_constants_aexp a) }>
  | <{ c1 ; c2 }>
      <{ fold_constants_com c1 ; fold_constants_com c2 }>
  | <{ if b then c1 else c2 end }>
      match fold_constants_bexp b with
      | <{true}>fold_constants_com c1
      | <{false}>fold_constants_com c2
      | b'<{ if b' then fold_constants_com c1
                       else fold_constants_com c2 end}>
      end
  | <{ while b do c1 end }>
      match fold_constants_bexp b with
      | <{true}><{ while true do skip end }>
      | <{false}><{ skip }>
      | b'<{ while b' do (fold_constants_com c1) end }>
      end
  end.

Example fold_com_ex1 :
  fold_constants_com
    (* Original program: *)
    <{ X := 4 + 5;
       Y := X - 3;
       if (X - Y) = (2 + 4) then skip
       else Y := 0 end;
       if 0 (4 - (2 + 1)) then Y := 0
       else skip end;
       while Y = 0 do
         X := X + 1
       end }>
  = (* After constant folding: *)
    <{ X := 9;
       Y := X - 3;
       if (X - Y) = 6 then skip
       else Y := 0 end;
       Y := 0;
       while Y = 0 do
         X := X + 1
       end }>.
Proof. reflexivity. Qed.

Soundness of Constant Folding

Now we need to show that what we've done is correct.
Here's the proof for arithmetic expressions:
Theorem fold_constants_aexp_sound :
  atrans_sound fold_constants_aexp.
Proof.
  unfold atrans_sound. intros a. unfold aequiv. intros st.
  induction a; simpl;
    (* ANum and AId follow immediately *)
    try reflexivity;
    (* APlus, AMinus, and AMult follow from the IH
       and the observation that
              aeval st (<{ a1 + a2 }>)
            = ANum ((aeval st a1) + (aeval st a2))
            = aeval st (ANum ((aeval st a1) + (aeval st a2)))
       (and similarly for AMinus/minus and AMult/mult) *)

    try (destruct (fold_constants_aexp a1);
         destruct (fold_constants_aexp a2);
         rewrite IHa1; rewrite IHa2; reflexivity). Qed.

Exercise: 3 stars, standard, optional (fold_bexp_Eq_informal)

Here is an informal proof of the BEq case of the soundness argument for boolean expression constant folding. Read it carefully and compare it to the formal proof that follows. Then fill in the BLe case of the formal proof (without looking at the BEq case, if possible).
Theorem: The constant folding function for booleans, fold_constants_bexp, is sound.
Proof: We must show that b is equivalent to fold_constants_bexp b, for all boolean expressions b. Proceed by induction on b. We show just the case where b has the form a1 = a2.
In this case, we must show
       beval st <{ a1 = a2 }>
     = beval st (fold_constants_bexp <{ a1 = a2 }>).
There are two cases to consider:
  • First, suppose fold_constants_aexp a1 = ANum n1 and fold_constants_aexp a2 = ANum n2 for some n1 and n2.
    In this case, we have
               fold_constants_bexp <{ a1 = a2 }>
             = if n1 =? n2 then <{true}> else <{false}>
    and
               beval st <{a1 = a2}>
             = (aeval st a1) =? (aeval st a2).
    By the soundness of constant folding for arithmetic expressions (Lemma fold_constants_aexp_sound), we know
               aeval st a1
             = aeval st (fold_constants_aexp a1)
             = aeval st (ANum n1)
             = n1
    and
               aeval st a2
             = aeval st (fold_constants_aexp a2)
             = aeval st (ANum n2)
             = n2,
    so
               beval st <{a1 = a2}>
             = (aeval a1) =? (aeval a2)
             = n1 =? n2.
    Also, it is easy to see (by considering the cases n1 = n2 and n1 n2 separately) that
               beval st (if n1 =? n2 then <{true}> else <{false}>)
             = if n1 =? n2 then beval st <{true}> else beval st <{false}>
             = if n1 =? n2 then true else false
             = n1 =? n2.
    So
               beval st (<{ a1 = a2 }>)
             = n1 =? n2.
             = beval st (if n1 =? n2 then <{true}> else <{false}>),
    as required.
  • Otherwise, one of fold_constants_aexp a1 and fold_constants_aexp a2 is not a constant. In this case, we must show
               beval st <{a1 = a2}>
             = beval st (<{ (fold_constants_aexp a1) =
                             (fold_constants_aexp a2) }>),
    which, by the definition of beval, is the same as showing
               (aeval st a1) =? (aeval st a2)
             = (aeval st (fold_constants_aexp a1)) =?
                       (aeval st (fold_constants_aexp a2)).
    But the soundness of constant folding for arithmetic expressions (fold_constants_aexp_sound) gives us
             aeval st a1 = aeval st (fold_constants_aexp a1)
             aeval st a2 = aeval st (fold_constants_aexp a2),
    completing the case.
Theorem fold_constants_bexp_sound:
  btrans_sound fold_constants_bexp.
Proof.
  unfold btrans_sound. intros b. unfold bequiv. intros st.
  induction b;
    (* true and false are immediate *)
    try reflexivity.
  - (* BEq *)
    simpl.
    remember (fold_constants_aexp a1) as a1' eqn:Heqa1'.
    remember (fold_constants_aexp a2) as a2' eqn:Heqa2'.
    replace (aeval st a1) with (aeval st a1') by
       (subst a1'; rewrite <- fold_constants_aexp_sound; reflexivity).
    replace (aeval st a2) with (aeval st a2') by
       (subst a2'; rewrite <- fold_constants_aexp_sound; reflexivity).
    destruct a1'; destruct a2'; try reflexivity.
    (* The only interesting case is when both a1 and a2
       become constants after folding *)

      simpl. destruct (n =? n0); reflexivity.
  - (* BNeq *)
    simpl.
    remember (fold_constants_aexp a1) as a1' eqn:Heqa1'.
    remember (fold_constants_aexp a2) as a2' eqn:Heqa2'.
    replace (aeval st a1) with (aeval st a1') by
       (subst a1'; rewrite <- fold_constants_aexp_sound; reflexivity).
    replace (aeval st a2) with (aeval st a2') by
       (subst a2'; rewrite <- fold_constants_aexp_sound; reflexivity).
    destruct a1'; destruct a2'; try reflexivity.
    (* The only interesting case is when both a1 and a2
       become constants after folding *)

      simpl. destruct (n =? n0); reflexivity.
  - (* BLe *)
    (* FILL IN HERE *) admit.
  - (* BGt *)
    (* FILL IN HERE *) admit.
  - (* BNot *)
    simpl. remember (fold_constants_bexp b) as b' eqn:Heqb'.
    rewrite IHb.
    destruct b'; reflexivity.
  - (* BAnd *)
    simpl.
    remember (fold_constants_bexp b1) as b1' eqn:Heqb1'.
    remember (fold_constants_bexp b2) as b2' eqn:Heqb2'.
    rewrite IHb1. rewrite IHb2.
    destruct b1'; destruct b2'; reflexivity.
(* FILL IN HERE *) Admitted.

Exercise: 3 stars, standard (fold_constants_com_sound)

Complete the while case of the following proof.
Theorem fold_constants_com_sound :
  ctrans_sound fold_constants_com.
Proof.
  unfold ctrans_sound. intros c.
  induction c; simpl.
  - (* skip *) apply refl_cequiv.
  - (* := *) apply CAsgn_congruence.
              apply fold_constants_aexp_sound.
  - (* ; *) apply CSeq_congruence; assumption.
  - (* if *)
    assert (bequiv b (fold_constants_bexp b)). {
      apply fold_constants_bexp_sound. }
    destruct (fold_constants_bexp b) eqn:Heqb;
      try (apply CIf_congruence; assumption).
      (* (If the optimization doesn't eliminate the if, then the
          result is easy to prove from the IH and
          fold_constants_bexp_sound.) *)

    + (* b always true *)
      apply trans_cequiv with c1; try assumption.
      apply if_true; assumption.
    + (* b always false *)
      apply trans_cequiv with c2; try assumption.
      apply if_false; assumption.
  - (* while *)
    (* FILL IN HERE *) Admitted.

Soundness of (0 + n) Elimination, Redux

Exercise: 4 stars, standard, optional (optimize_0plus_var)

Recall the definition optimize_0plus from the Imp chapter of Logical Foundations:
    Fixpoint optimize_0plus (a:aexp) : aexp :=
      match a with
      | ANum n
          ANum n
      | <{ 0 + a2 }> ⇒
          optimize_0plus a2
      | <{ a1 + a2 }> ⇒
          <{ (optimize_0plus a1) + (optimize_0plus a2) }>
      | <{ a1 - a2 }> ⇒
          <{ (optimize_0plus a1) - (optimize_0plus a2) }>
      | <{ a1 × a2 }> ⇒
          <{ (optimize_0plus a1) × (optimize_0plus a2) }>
      end.
Note that this function is defined over the old version of aexps, without states.
Write a new version of this function that deals with variables (by leaving them alone), plus analogous ones for bexps and commands:
     optimize_0plus_aexp
     optimize_0plus_bexp
     optimize_0plus_com
Fixpoint optimize_0plus_aexp (a : aexp) : aexp
  (* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.

Fixpoint optimize_0plus_bexp (b : bexp) : bexp
  (* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.

Fixpoint optimize_0plus_com (c : com) : com
  (* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.

Example test_optimize_0plus:
    optimize_0plus_com
       <{ while X 0 do X := 0 + X - 1 end }>
  = <{ while X 0 do X := X - 1 end }>.
Proof.
  (* FILL IN HERE *) Admitted.
Prove that these three functions are sound, as we did for fold_constants_×. Make sure you use the congruence lemmas in the proof of optimize_0plus_com -- otherwise it will be long!
Theorem optimize_0plus_aexp_sound:
  atrans_sound optimize_0plus_aexp.
Proof.
  (* FILL IN HERE *) Admitted.

Theorem optimize_0plus_bexp_sound :
  btrans_sound optimize_0plus_bexp.
Proof.
  (* FILL IN HERE *) Admitted.

Theorem optimize_0plus_com_sound :
  ctrans_sound optimize_0plus_com.
Proof.
  (* FILL IN HERE *) Admitted.
Finally, let's define a compound optimizer on commands that first folds constants (using fold_constants_com) and then eliminates 0 + n terms (using optimize_0plus_com).
Prove that this optimizer is sound.
Theorem optimizer_sound :
  ctrans_sound optimizer.
Proof.
  (* FILL IN HERE *) Admitted.

Proving Inequivalence

Next, let's look at some programs that are not equivalent.
Suppose that c1 is a command of the form
       X := a1; Y := a2 and c2 is the command
       X := a1; Y := a2' where a2' is formed by substituting a1 for all occurrences of X in a2.
For example, c1 and c2 might be:
       c1 = (X := 42 + 53;
               Y := Y + X)
       c2 = (X := 42 + 53;
               Y := Y + (42 + 53))
Clearly, this particular c1 and c2 are equivalent. Is this true in general?
We will see in a moment that it is not, but it is worthwhile to pause, now, and see if you can find a counter-example on your own.
More formally, here is the function that substitutes an arithmetic expression u for each occurrence of a given variable x in another expression a:
Fixpoint subst_aexp (x : string) (u : aexp) (a : aexp) : aexp :=
  match a with
  | ANum n
      ANum n
  | AId x'
      if String.eqb x x' then u else AId x'
  | <{ a1 + a2 }>
      <{ (subst_aexp x u a1) + (subst_aexp x u a2) }>
  | <{ a1 - a2 }>
      <{ (subst_aexp x u a1) - (subst_aexp x u a2) }>
  | <{ a1 × a2 }>
      <{ (subst_aexp x u a1) × (subst_aexp x u a2) }>
  end.

Example subst_aexp_ex :
  subst_aexp X <{42 + 53}> <{Y + X}>
  = <{ Y + (42 + 53)}>.
Proof. simpl. reflexivity. Qed.
And here is the property we are interested in, expressing the claim that commands c1 and c2 as described above are always equivalent.
Definition subst_equiv_property : Prop := x1 x2 a1 a2,
  cequiv <{ x1 := a1; x2 := a2 }>
         <{ x1 := a1; x2 := subst_aexp x1 a1 a2 }>.
Sadly, the property does not always hold.
Here is a counterexample:
       X := X + 1; Y := X If we perform the substitution, we get
       X := X + 1; Y := X + 1 which clearly isn't equivalent.
Theorem subst_inequiv :
  ¬ subst_equiv_property.
Proof.
  unfold subst_equiv_property.
  intros Contra.

  (* Here is the counterexample: assuming that subst_equiv_property
     holds allows us to prove that these two programs are
     equivalent... *)

  remember <{ X := X + 1;
              Y := X }>
      as c1.
  remember <{ X := X + 1;
              Y := X + 1 }>
      as c2.
  assert (cequiv c1 c2) by (subst; apply Contra).
  clear Contra.

  (* ... allows us to show that the command c2 can terminate
     in two different final states:
        st1 = (Y !-> 1 ; X !-> 1)
        st2 = (Y !-> 2 ; X !-> 1). *)

  remember (Y !-> 1 ; X !-> 1) as st1.
  remember (Y !-> 2 ; X !-> 1) as st2.
  assert (H1 : empty_st =[ c1 ]=> st1);
  assert (H2 : empty_st =[ c2 ]=> st2);
  try (subst;
       apply E_Seq with (st' := (X !-> 1));
       apply E_Asgn; reflexivity).
  clear Heqc1 Heqc2.

  apply H in H1.
  clear H.

  (* Finally, we use the fact that evaluation is deterministic
     to obtain a contradiction. *)

  assert (Hcontra : st1 = st2)
    by (apply (ceval_deterministic c2 empty_st); assumption).
  clear H1 H2.

  assert (Hcontra' : st1 Y = st2 Y)
    by (rewrite Hcontra; reflexivity).
  subst. discriminate. Qed.

Exercise: 4 stars, standard, optional (better_subst_equiv)

The equivalence we had in mind above was not complete nonsense -- in fact, it was actually almost right. To make it correct, we just need to exclude the case where the variable X occurs in the right-hand side of the first assignment statement.
Inductive var_not_used_in_aexp (x : string) : aexp Prop :=
  | VNUNum : n, var_not_used_in_aexp x (ANum n)
  | VNUId : y, x y var_not_used_in_aexp x (AId y)
  | VNUPlus : a1 a2,
      var_not_used_in_aexp x a1
      var_not_used_in_aexp x a2
      var_not_used_in_aexp x (<{ a1 + a2 }>)
  | VNUMinus : a1 a2,
      var_not_used_in_aexp x a1
      var_not_used_in_aexp x a2
      var_not_used_in_aexp x (<{ a1 - a2 }>)
  | VNUMult : a1 a2,
      var_not_used_in_aexp x a1
      var_not_used_in_aexp x a2
      var_not_used_in_aexp x (<{ a1 × a2 }>).

Lemma aeval_weakening : x st a ni,
  var_not_used_in_aexp x a
  aeval (x !-> ni ; st) a = aeval st a.
Proof.
  (* FILL IN HERE *) Admitted.
Using var_not_used_in_aexp, formalize and prove a correct version of subst_equiv_property.
(* FILL IN HERE *)

Exercise: 3 stars, standard (inequiv_exercise)

Prove that an infinite loop is not equivalent to skip
Theorem inequiv_exercise:
  ¬ cequiv <{ while true do skip end }> <{ skip }>.
Proof.
  (* FILL IN HERE *) Admitted.

Extended Exercise: Nondeterministic Imp

As we have seen (in theorem ceval_deterministic in the Imp chapter), Imp's evaluation relation is deterministic. However, non-determinism is an important part of the definition of many real programming languages. For example, in many imperative languages (such as C and its relatives), the order in which function arguments are evaluated is unspecified. The program fragment
      x = 0;
      f(++x, x)
might call f with arguments (1, 0) or (1, 1), depending how the compiler chooses to order things. This can be a little confusing for programmers, but it gives the compiler writer useful freedom.
In this exercise, we will extend Imp with a simple nondeterministic command and study how this change affects program equivalence. The new command has the syntax HAVOC X, where X is an identifier. The effect of executing HAVOC X is to assign an arbitrary number to the variable X, nondeterministically. For example, after executing the program:
      HAVOC Y;
      Z := Y × 2
the value of Y can be any number, while the value of Z is twice that of Y (so Z is always even). Note that we are not saying anything about the probabilities of the outcomes -- just that there are (infinitely) many different outcomes that can possibly happen after executing this nondeterministic code.
In a sense, a variable on which we do HAVOC roughly corresponds to an uninitialized variable in a low-level language like C. After the HAVOC, the variable holds a fixed but arbitrary number. Most sources of nondeterminism in language definitions are there precisely because programmers don't care which choice is made (and so it is good to leave it open to the compiler to choose whichever will run faster).
We call this new language Himp (``Imp extended with HAVOC'').
Module Himp.
To formalize Himp, we first add a clause to the definition of commands.
Inductive com : Type :=
  | CSkip : com
  | CAsgn : string aexp com
  | CSeq : com com com
  | CIf : bexp com com com
  | CWhile : bexp com com
  | CHavoc : string com. (* <--- NEW *)

Notation "'havoc' l" := (CHavoc l)
                          (in custom com at level 60, l constr at level 0).
Notation "'skip'" :=
         CSkip (in custom com at level 0).
Notation "x := y" :=
         (CAsgn x y)
            (in custom com at level 0, x constr at level 0,
             y at level 85, no associativity).
Notation "x ; y" :=
         (CSeq x y)
           (in custom com at level 90, right associativity).
Notation "'if' x 'then' y 'else' z 'end'" :=
         (CIf x y z)
           (in custom com at level 89, x at level 99,
            y at level 99, z at level 99).
Notation "'while' x 'do' y 'end'" :=
         (CWhile x y)
            (in custom com at level 89, x at level 99, y at level 99).

Exercise: 2 stars, standard (himp_ceval)

Now, we must extend the operational semantics. We have provided a template for the ceval relation below, specifying the big-step semantics. What rule(s) must be added to the definition of ceval to formalize the behavior of the HAVOC command?

Inductive ceval : com state state Prop :=
  | E_Skip : st,
      st =[ skip ]=> st
  | E_Asgn : st a n x,
      aeval st a = n
      st =[ x := a ]=> (x !-> n ; st)
  | E_Seq : c1 c2 st st' st'',
      st =[ c1 ]=> st'
      st' =[ c2 ]=> st''
      st =[ c1 ; c2 ]=> st''
  | E_IfTrue : st st' b c1 c2,
      beval st b = true
      st =[ c1 ]=> st'
      st =[ if b then c1 else c2 end ]=> st'
  | E_IfFalse : st st' b c1 c2,
      beval st b = false
      st =[ c2 ]=> st'
      st =[ if b then c1 else c2 end ]=> st'
  | E_WhileFalse : b st c,
      beval st b = false
      st =[ while b do c end ]=> st
  | E_WhileTrue : st st' st'' b c,
      beval st b = true
      st =[ c ]=> st'
      st' =[ while b do c end ]=> st''
      st =[ while b do c end ]=> st''
(* FILL IN HERE *)

  where "st =[ c ]=> st'" := (ceval c st st').
As a sanity check, the following claims should be provable for your definition:
Example havoc_example1 : empty_st =[ havoc X ]=> (X !-> 0).
Proof.
(* FILL IN HERE *) Admitted.

Example havoc_example2 :
  empty_st =[ skip; havoc Z ]=> (Z !-> 42).
Proof.
(* FILL IN HERE *) Admitted.

(* Do not modify the following line: *)
Definition manual_grade_for_Check_rule_for_HAVOC : option (nat×string) := None.
Finally, we repeat the definition of command equivalence from above:
Definition cequiv (c1 c2 : com) : Prop := st st' : state,
  st =[ c1 ]=> st' st =[ c2 ]=> st'.
Let's apply this definition to prove some nondeterministic programs equivalent / inequivalent.

Exercise: 3 stars, standard (havoc_swap)

Are the following two programs equivalent?
Definition pXY :=
  <{ havoc X ; havoc Y }>.

Definition pYX :=
  <{ havoc Y; havoc X }>.
If you think they are equivalent, prove it. If you think they are not, prove that.
Theorem pXY_cequiv_pYX :
  cequiv pXY pYX ¬cequiv pXY pYX.
Proof.
  (* Hint: You may want to use t_update_permute at some point,
     in which case you'll probably be left with X Y as a
     hypothesis. You can use discriminate to discharge this. *)

  (* FILL IN HERE *) Admitted.

Exercise: 4 stars, standard, optional (havoc_copy)

Are the following two programs equivalent?
Definition ptwice :=
  <{ havoc X; havoc Y }>.

Definition pcopy :=
  <{ havoc X; Y := X }>.
If you think they are equivalent, then prove it. If you think they are not, then prove that. (Hint: You may find the assert tactic useful.)
Theorem ptwice_cequiv_pcopy :
  cequiv ptwice pcopy ¬cequiv ptwice pcopy.
Proof. (* FILL IN HERE *) Admitted.
The definition of program equivalence we are using here has some subtle consequences on programs that may loop forever. What cequiv says is that the set of possible terminating outcomes of two equivalent programs is the same. However, in a language with nondeterminism, like Himp, some programs always terminate, some programs always diverge, and some programs can nondeterministically terminate in some runs and diverge in others. The final part of the following exercise illustrates this phenomenon.

Exercise: 4 stars, advanced (p1_p2_term)

Consider the following commands:
Definition p1 : com :=
  <{ while ¬ (X = 0) do
       havoc Y;
       X := X + 1
     end }>.

Definition p2 : com :=
  <{ while ¬ (X = 0) do
       skip
     end }>.
Intuitively, p1 and p2 have the same termination behavior: either they loop forever, or they terminate in the same state they started in. We can capture the termination behavior of p1 and p2 individually with these lemmas:
Lemma p1_may_diverge : st st', st X 0
  ¬ st =[ p1 ]=> st'.
Proof. (* FILL IN HERE *) Admitted.

Lemma p2_may_diverge : st st', st X 0
  ¬ st =[ p2 ]=> st'.
Proof.
(* FILL IN HERE *) Admitted.

Exercise: 4 stars, advanced (p1_p2_equiv)

Use these two lemmas to prove that p1 and p2 are actually equivalent.
Theorem p1_p2_equiv : cequiv p1 p2.
Proof. (* FILL IN HERE *) Admitted.

Exercise: 4 stars, advanced (p3_p4_inequiv)

Prove that the following programs are not equivalent. (Hint: What should the value of Z be when p3 terminates? What about p4?)
Definition p3 : com :=
  <{ Z := 1;
     while X 0 do
       havoc X;
       havoc Z
     end }>.

Definition p4 : com :=
  <{ X := 0;
     Z := 1 }>.

Theorem p3_p4_inequiv : ¬ cequiv p3 p4.
Proof. (* FILL IN HERE *) Admitted.

Exercise: 5 stars, advanced, optional (p5_p6_equiv)

Prove that the following commands are equivalent. (Hint: As mentioned above, our definition of cequiv for Himp only takes into account the sets of possible terminating configurations: two programs are equivalent if and only if the set of possible terminating states is the same for both programs when given a same starting state st. If p5 terminates, what should the final state be? Conversely, is it always possible to make p5 terminate?)
Definition p5 : com :=
  <{ while X 1 do
       havoc X
     end }>.

Definition p6 : com :=
  <{ X := 1 }>.

Theorem p5_p6_equiv : cequiv p5 p6.
Proof. (* FILL IN HERE *) Admitted.
End Himp.

Additional Exercises

Exercise: 3 stars, standard, optional (swap_noninterfering_assignments)

(Hint: You may or may not -- depending how you approach it -- need to use functional_extensionality explicitly for this one.)
Theorem swap_noninterfering_assignments: l1 l2 a1 a2,
  l1 l2
  var_not_used_in_aexp l1 a2
  var_not_used_in_aexp l2 a1
  cequiv
    <{ l1 := a1; l2 := a2 }>
    <{ l2 := a2; l1 := a1 }>.
Proof.
(* FILL IN HERE *) Admitted.

Exercise: 4 stars, standard, optional (for_while_equiv)

This exercise extends the optional add_for_loop exercise from the Imp chapter, where you were asked to extend the language of commands with C-style for loops. Prove that the command:
      for (c1; b; c2) {
          c3
      }
is equivalent to:
       c1;
       while b do
         c3;
         c2
       end
(* FILL IN HERE *)

Exercise: 4 stars, advanced, optional (capprox)

In this exercise we define an asymmetric variant of program equivalence we call program approximation. We say that a program c1 approximates a program c2 when, for each of the initial states for which c1 terminates, c2 also terminates and produces the same final state. Formally, program approximation is defined as follows:
Definition capprox (c1 c2 : com) : Prop := (st st' : state),
  st =[ c1 ]=> st' st =[ c2 ]=> st'.
For example, the program
  c1 = while X ≠ 1 do
         X := X - 1
       end
approximates c2 = X := 1, but c2 does not approximate c1 since c1 does not terminate when X = 0 but c2 does. If two programs approximate each other in both directions, then they are equivalent.
Find two programs c3 and c4 such that neither approximates the other.
Definition c3 : com
  (* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
Definition c4 : com
  (* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.

Theorem c3_c4_different : ¬ capprox c3 c4 ¬ capprox c4 c3.
Proof. (* FILL IN HERE *) Admitted.
Find a program cmin that approximates every other program.
Definition cmin : com
  (* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.

Theorem cmin_minimal : c, capprox cmin c.
Proof. (* FILL IN HERE *) Admitted.
Finally, find a non-trivial property which is preserved by program approximation (when going from left to right).
Definition zprop (c : com) : Prop
  (* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.

Theorem zprop_preserving : c c',
  zprop c capprox c c' zprop c'.
Proof. (* FILL IN HERE *) Admitted.
(* 2024-01-02 15:05 *)